DC 欄位 |
值 |
語言 |
DC.contributor | 資訊工程學系 | zh_TW |
DC.creator | 鄭書伃 | zh_TW |
DC.creator | Shu-Yu Cheng | en_US |
dc.date.accessioned | 2021-8-16T07:39:07Z | |
dc.date.available | 2021-8-16T07:39:07Z | |
dc.date.issued | 2021 | |
dc.identifier.uri | http://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=108522091 | |
dc.contributor.department | 資訊工程學系 | zh_TW |
DC.description | 國立中央大學 | zh_TW |
DC.description | National Central University | en_US |
dc.description.abstract | 手語辨識可以讓很多聽語障人士受益,也能縮短聽語障人士與親 友之間溝通的橋樑。多年來,深度學習在手語辨識的領域達成了很大 的成就。有很多方法可以提取手部骨架或符號的特徵。這些不同的特 徵被許多研究用作深度神經網絡(DNN)的輸入,以用來辨識手語。 然而,特徵提取的效率和手語辨識的準確度仍有進步的空間。本文 中,我們提出了一種新的手語辨識演算法,此演算法先用多層自組織 映射圖(SOM)來將動態手語轉成靜態的響應圖 (response map)。由 於卷積神經網路(CNN)在圖像分類方面具有非凡的性能,因此,我 們就將此靜態的響應圖當成特徵輸入卷積神經網路予以達成手語辨 識之目的。
從美國手語詞典視頻資料集 (ASLLVD) 中選出來 36 個單字作 為我們的資料集來測試所提之手語辨識演算法之有效性,我們在資料 集上達到了 78.57% 的辨識準確率。 | zh_TW |
dc.description.abstract | The recognition of sign language can benefit many dumb deaf people and bridge the gap of communication between them and their families and friends. For many years, deep learning has achieved great results in the field of sign language recognition. There are lots of methods for extracting features of hand shapes or signs. These different features are used as input of deep neural networks (DNN) in many studies for sign language recognition. However, the efficiency of feature extraction and the recognition accuracy still have room for improvement. In this study, we proposed a novel algorithm for sign language recognition. The algorithm first uses a hierarchical self-organizing map (SOM) to covert dynamic sign language into a static response map. Since the convolutional neural network (CNN) has an extraordinary performance in image classification, we take the static response maps as input features to CNN to achieve the purpose of sign language recognition.
We selected 36 signs from the American sign language lexicon video dataset (ASLLVD) as our dataset to test the effectiveness of our proposed algorithm. Finally, We reached a recognition accuracy of 78.57% on the dataset. | en_US |
DC.subject | 手語辨識 | zh_TW |
DC.subject | 自組織映射圖 | zh_TW |
DC.subject | 深度學習 | zh_TW |
DC.subject | Sign language recognition | en_US |
DC.subject | Self-Organizing Maps, | en_US |
DC.subject | Deep learning | en_US |
DC.title | 基於多層自組織映射圖之手語辨識演算法 | zh_TW |
dc.language.iso | zh-TW | zh-TW |
DC.title | A Hierarchical Self-Organizing Maps-based Sign Language Recognition Algorithm | en_US |
DC.type | 博碩士論文 | zh_TW |
DC.type | thesis | en_US |
DC.publisher | National Central University | en_US |