博碩士論文 108522120 完整後設資料紀錄

DC 欄位 語言
DC.contributor資訊工程學系zh_TW
DC.creator施品妤zh_TW
DC.creatorPin-Yu Shihen_US
dc.date.accessioned2022-1-20T07:39:07Z
dc.date.available2022-1-20T07:39:07Z
dc.date.issued2022
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=108522120
dc.contributor.department資訊工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract水稻是台灣重要的作物之一,每年政府都會需要了解其種植的區域與面積,並用於統計產量及訂定相關決策。傳統方法是經由專家對每張遙測影像進行判釋並人工繪製標記,然而這樣的方式效率很低,根本無法及時的提供大量調查的資訊。隨著近年人工智慧技術的發展,把相關技術應用於輔助判釋便可以大幅降低該項作業對人力的依賴,並能做到快速有效的水稻自動判釋。 目前應用於水稻判釋的方法是讓模型學習整張航照影像的資訊,然而對模型來說可能需要學習的資訊太多,因此本研究提出讓模型只在農地上作學習。另外,目前採用的語義分割模型是UNet,因其缺乏考慮像素間的空間關係,導致分割結果呈現破碎狀態,造成準確率降低,本研究將提出UNet-FNN架構來解決此問題。根據觀察,在不同地區的稻田有許多不同的樣貌,因此本研究將使用基於圖幅塊的隨機採樣來增加訓練資料的多樣性以訓練出更好的模型。zh_TW
dc.description.abstractRice is one of the important crops in Taiwan. Every year, the government needs to know its planting area and the location, and use it to calculate the yield and make relevant decisions. The traditional method is that experts interpret each remote sensing image and draw labels manually. However, this method is very inefficient and cannot provide a large amount of survey information in time. With the development of artificial intelligence technology in recent years, the application of related technologies to assisted interpretation can greatly reduce the dependence on manpower, and achieve rapid and effective automatic interpretation of rice. The current method used in rice segmentation is that model learns the information of the entire aerial image. However, there may be too much information for the model to learn. Therefore, this research proposes that the model only learns on farmland. In addition, the currently used semantic segmentation model is UNet. Because UNet does not consider the spatial relationship between pixels, it will lead to speckle segmentation results, resulting in reduced accuracy. This research will propose the UNet-FNN architecture to solve this problem. According to observations, there are many different appearances of rice fields in different area. Therefore, this study will use random sampling based on framelets to increase the diversity of training data to train a better model.en_US
DC.subject語義分割zh_TW
DC.subjectUNetzh_TW
DC.subject全連接網路zh_TW
DC.subject水稻判釋zh_TW
DC.subjectSemantic segmentationen_US
DC.subjectUNeten_US
DC.subjectFully connected networken_US
DC.subjectRice segmentationen_US
DC.title結合語義分割與全連接網路做基於坵塊的水稻判釋之初步研究zh_TW
dc.language.isozh-TWzh-TW
DC.titleIntegration of semantic segmentation and fully connected network for parcel-based rice segmentation: a preliminary studyen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明