博碩士論文 108552022 完整後設資料紀錄

DC 欄位 語言
DC.contributor資訊工程學系zh_TW
DC.creator楊若函zh_TW
DC.creatorJo-Han Yangen_US
dc.date.accessioned2021-10-19T07:39:07Z
dc.date.available2021-10-19T07:39:07Z
dc.date.issued2021
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=108552022
dc.contributor.department資訊工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract在深度學習的領域中,分類任務的技術越趨成熟,而近年來相關研 究人員也陸續投身於具備新穎性檢測的階層式分類方法。我們在此篇 論文提出了一個利用分解信心值和連接條件機率,達到具新穎性檢測 的階層式分類模型,且訓練過程中不需加入額外的新類別資料,而基 準模型包含了自頂向下方法及攤平方法。將我們提出的模型與基準模 型相互比較,從結果可以得知,我們的模型除了有效提升已知類別的 準確度外,於尋找新的分類上也更加精準。此外針對階層式新類偵測 的任務,論文中提出了一個新的算分方法,目的是同時考慮新類偵測 以及階層式分類兩個任務,使其能更精確地顯示出模型的效能。zh_TW
dc.description.abstractWith the development of classification methods based on deep learning, hierarchical classification tasks with new class detection began to attract researchers’ attention. In this paper, we propose a hierarchical classification with a novelty detection model by decomposing confidence and concatenating conditional probability, which can be trained without labeled novelty data. We compare it with a baseline model that combines the top­down method and flatten method. From the results, we found that our model can improve the classification accuracy of known categories and find instances belonging to new categories more effectively. We propose a new evaluation metric for the hierarchical novelty detection task. It considers both novelty detection and hierarchical classification so that it is able to express the performance of the model more obviously.en_US
DC.subject自然語言處理zh_TW
DC.subject階層式文字分類zh_TW
DC.subject階層式新類偵測zh_TW
DC.subjectNature Language Processingen_US
DC.subjectHierarchical Text Classificationen_US
DC.subjectHierarchical Novelty Detectionen_US
DC.title用於不斷發展的分類法之具備新穎性檢 測的分層文本分類技術zh_TW
dc.language.isozh-TWzh-TW
DC.titleHierarchical text classification with novelty detection for evolving taxonomiesen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明