dc.description.abstract | Most of the solar activity is dominated by the solar magnetic field. Therefore, in order to accurately predict the solar activities, it is important to correctly determine all the solar magnetic structures. In addition, there are many structures on the solar surface with scales smaller than the resolution of even the best observing instrument to-date. To improve the spatial resolution, many studies have developed various Artificial Neural Network (ANN) models. However, ANN models require large amount of data for training, and the trained model can only be applied to the same type of images as the training data. In this study, we propose a new non-ANN method which improves the spatial resolution by reducing the size of pixel. This pixel reduction method is based on the idea that the intensity of a plane wave detected by the observers of different viewing angles is different because of projec-tion. By using concept, we can in principle recover the true intensities of the point light sources comprising the area of the observed pixel. The solar magnetic fields are not di-rectly measureable but have to be derived from the directly observed Stokes parameters, which are a set of parameters that fully describe the intensity and polarizations of elec-tromagnetic waves. To test the pixel reduction method, we first simulate the observed Stokes parameters by using the physical parameters provided in a sunspot model and solving the Radiative Transfer Equation, and apply the method to both the spectral lines and the 2D images to evaluate its performance. The results show that this method can re-duce the pixel size for both spectral line of Stokes parameters and 2D images. In the image results, reducing the horizontal pixel size can better resolve the structures along the hori-zontal cross section, and reducing the vertical pixel size can better resolve the structures along the vertical cross section. The recovered intensities show a high correlation with the original intensity, indicating that this pixel segmentation method can reasonably obtain the true light intensity of sub-pixels. | en_US |