dc.description.abstract | Typhoon Bavi (2020) intensified by 100 kt (Category-3) at 18Z 25 August and maintained in the shallow East China Sea region for 6 hours, causing considerable damage in the Korean Peninsula and Northeast China. Based on satellite, reanalysis data, and IORS in-situ station observed ocean thermal structure and numerical experimentsocean mixing models, in this study, we examined the ocean-typhoon interaction over around the shallow East China Sea region under Typhoon Bavi. Since this typhoon intensified over the shallow East China Sea region, typhoon-induced a large SST cooling effect (around 8℃oC), attributed to the abnormal ocean thermal structure, including over 30℃oC warming sea surface temperature and prevailing of the Yellow Sea Cold Bottom Water along with the strong stratification effects, which may prevent the vertical mixing process, based on numerical ocean mixing experimentsmodel. Moreover, the 1DPWP ocean mixing modelsimulation also emphasized that the shallow water was not the main factor in controlling typhoon-induced cooling. In addition, the typhoon’s typhoon’s response to the ocean regarding the air-sea heat flux-controlled typhoon intensification. The IORS observation results indicated that the air-sea heat flux enthalpy flux was generally +700 W/m2 during Typhoon Bavi’s Bavi’s intensification phase, which supplied the intense energy from the ocean to the typhoon. Likewise, the atmospheric environment also supported favorable conditions for the intensification process of Typhoon Bavi. Near-saturated relative humidity (over 80 %) at lower and mid-levels may contribute to the typhoon’s intensity evolution, notably as it reached a Category-3 state. However, the vertical wind shear was still high and did may not support Typhoon Bavi intensification, although it weakened (minimum was 11.74 m/s) as the typhoon intensified. Furthermore, the maximum potential intensity estimation was generally consistent with Typhoon Bavi in reality. It is reasonable to expect that this typhoon could intensify to Category-3. The results of this study could explain the intensification of Typhoon Bavi over this incredible region as well as the effect of shallow water in this case. | en_US |