DC 欄位 |
值 |
語言 |
DC.contributor | 數學系 | zh_TW |
DC.creator | 梁佑任 | zh_TW |
DC.creator | You-Ren Liang | en_US |
dc.date.accessioned | 2024-1-10T07:39:07Z | |
dc.date.available | 2024-1-10T07:39:07Z | |
dc.date.issued | 2024 | |
dc.identifier.uri | http://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=109221008 | |
dc.contributor.department | 數學系 | zh_TW |
DC.description | 國立中央大學 | zh_TW |
DC.description | National Central University | en_US |
dc.description.abstract | 陳聖元(2022) 將二維常態分布N(μ_1, μ_2, σ^2, σ^2, ρ) 推廣至4 參數之2p 維常態分布並推得4 參數之最大概似估計式. 林家瑋(2023) 將二維常態分布N(μ_1, μ_2, σ^2_1, σ^2_2, ρ)推廣至5參數之2p 維常態分布並推得5 參數之漸近概似估計式. 當p = 2 時, 本文推得上述估計式之漸近常態性並據以討論漸近有效性. | zh_TW |
dc.description.abstract | Chen(2022) generalized the bivariate normal distribution N(μ_1, μ_2, σ^2, σ^2, ρ) to a 2p dimensional normal distribution and presented the maximum likelihood estimators of the parameters μ1, μ2, σ2 and ρ.Lin(2023) generalized the bivariate normal distribution
N(μ_1, μ_2, σ^2_1, σ^2_2, ρ) to a 2p dimensional normal distribution and presented the asymototic
likelihood equation estimators of μ_1, μ_2, σ^2_1, σ^2_2 and ρ.The purpose of this paper is to discuss the asymototic normality and asymototic efficiency of the estimators mentioned above for p = 2. | en_US |
DC.subject | 特定四維常態分布 | zh_TW |
DC.subject | 漸近常態性 | zh_TW |
DC.subject | 漸近有效性 | zh_TW |
DC.subject | 參數估計式 | zh_TW |
DC.title | 特定四維常態分布之參數估計式的漸近常態性及漸近有效性 | zh_TW |
dc.language.iso | zh-TW | zh-TW |
DC.type | 博碩士論文 | zh_TW |
DC.type | thesis | en_US |
DC.publisher | National Central University | en_US |