博碩士論文 109221014 完整後設資料紀錄

DC 欄位 語言
DC.contributor數學系zh_TW
DC.creator林寶德zh_TW
DC.creatorPao-TE Linen_US
dc.date.accessioned2022-7-25T07:39:07Z
dc.date.available2022-7-25T07:39:07Z
dc.date.issued2022
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=109221014
dc.contributor.department數學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract最大覆蓋問題在路徑限制下是NP-hard問題。 廣義成本收益演算法(GCB)能解決這樣的問題,並達到1/2(1-1/e)的近似最佳值。 但是GCB和近似最佳解仍有有一段差距。 此研究提出基於交叉熵的蒙地卡羅搜尋樹演算法 (CE-MCTS) 來解決這個問題。 這個演算法包含三個部分: 演化演算法 (EA) 用於採樣分支、信賴上界策略 (UCB) 用於選擇展開和估計分布演算法 (EDA) 用於模擬。實驗證實了CE-MCTS在不同地圖及成本限制底下的效能比其他兩個演算法(GCB、EAMC)更好。zh_TW
dc.description.abstractThe maximal coverage problems with routing constraints are NP-hard problems. The generalized cost-benefit algorithm (GCB) is able to solve this problem with a $frac{1}{2}(1-frac{1}{e})widetilde{OPT}$ guarantee. There is a space between the approximation optimal solution $(widetilde{OPT})$ and GCB performance. In this research, the cross-entropy based Monte Carlo Tree Search algorithm (CE-MCTS) is proposed to solve this problem. It consists of three parts: the evolutionary algorithm (EA) for sampling the branches, the upper confidence bound (UCB) policy for selections, and the estimation of distribution algorithm (EDA) for simulations. The experiments demonstrate that the CE-MCTS outperforms benchmark approaches (e.g., GCB, EAMC) in different maps with various budget constraints.en_US
DC.subject次模性zh_TW
DC.subject最大覆蓋問題zh_TW
DC.subject交叉熵zh_TW
DC.subject蒙地卡羅搜尋樹演算法zh_TW
DC.subjectSubmodularityen_US
DC.subjectMaximal coverage problemen_US
DC.subjectCross-Entropyen_US
DC.subjectMonte-Carlo Tree Searchen_US
DC.titleMaximal Coverage Problems with Routing Constraints using Cross-Entropy Monte Carlo Tree Searchen_US
dc.language.isoen_USen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明