博碩士論文 109225007 完整後設資料紀錄

DC 欄位 語言
DC.contributor統計研究所zh_TW
DC.creator吳宣廷zh_TW
DC.creatorXuan-Ting Wuen_US
dc.date.accessioned2022-9-15T07:39:07Z
dc.date.available2022-9-15T07:39:07Z
dc.date.issued2022
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=109225007
dc.contributor.department統計研究所zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract我們在具有高維矩陣值協變量數據的邏輯線性模型中考慮貝葉斯估計,特別是在超高維數據中。這項研究的動機是在經典的邏輯式模型中擴展貝葉斯方法。所提出的估計可以應用於在分類方法上,比較多的案例是有關於有無疾病,事件的是否發生,例如張量判別分析以及常見的成像研究、遺傳學等。我們用模擬研究和陶瓷樣品的化學成分數據集來展示所提出的方法。zh_TW
dc.description.abstractWe consider Bayesian estimation in a logistic linear model with high-dimensional matrixvalued covariate data, especially in ultra-high-dimensional data. The motivation for this study is to develop the Bayesian approach in classical logistic-style models. The proposed estimates can be applied to classification problems, most of which are related to the presence or absence of diseases and the occurrence of events, such as tensor discriminant analysis and common imaging studies, genetics, etc. Simulation studies and a dataset of the chemical composition of a dataset demonstrate the proposed method.en_US
DC.subject貝葉斯zh_TW
DC.subject高維度zh_TW
DC.subject邏輯式模型zh_TW
DC.subject貝式推論zh_TW
DC.subject三參數beta 正態zh_TW
DC.subjectBayesianen_US
DC.subjecthigh-dimensionalen_US
DC.subjectlogistic modelen_US
DC.subjectBayesian Inferenceen_US
DC.subjectThree Parameter Beta Normalen_US
DC.titleSparse Bayesian Estimation with High-dimensional Binary Response Dataen_US
dc.language.isoen_USen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明