博碩士論文 109229013 完整後設資料紀錄

DC 欄位 語言
DC.contributor天文研究所zh_TW
DC.creator鄭豫立zh_TW
DC.creatorYuli chengen_US
dc.date.accessioned2023-7-18T07:39:07Z
dc.date.available2023-7-18T07:39:07Z
dc.date.issued2023
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=109229013
dc.contributor.department天文研究所zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract我們的目標是對自2010年至今的鹿林光度觀測數據集進行分類。在進行這項工作之前, 我們使用了主成分分析並應用了顏色-顏色指數來編目近地小行星(NEAs)。然而,由 於它們的顏色數值相似,有時很難區分S型和Q型NEAs的相對反射率。為了使預測結果 更準確,我們應用了機器學習技術。我們使用了幾種算法,包括決策樹、隨機森林、 邏輯回歸、支持向量機和神經網絡zh_TW
dc.description.abstractWe aim to classify the dataset of Lulin photometry observations from 2010 to the present. Prior to this study, we utilized Principle Component Analysis and applied a color-color index to catalog near-Earth Asteroids (NEAs). However, distinguishing between the relative reflectance of S-type and Q-type NEAs proved challenging due to the similarity in their color values. To enhance the accuracy of our predictions, we incorporated machine learning techniques. We employed several algorithms, including decision trees, random forests, logistic regression, support vector machines, and neural networks.en_US
DC.subject近地小行星zh_TW
DC.subject軌道動力學zh_TW
DC.subject機器學習zh_TW
DC.subjectNear-Earth asteroiden_US
DC.subjectOrbital dynamicsen_US
DC.subjectMachine learningen_US
DC.title近地小行星的分類和軌道動力學zh_TW
dc.language.isozh-TWzh-TW
DC.titleTaxonomic Classification and Orbital Dynamics of Near-Earth Asteroidsen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明