博碩士論文 109282006 完整後設資料紀錄

DC 欄位 語言
DC.contributor物理學系zh_TW
DC.creator朱凱翊zh_TW
DC.creatorKai-I Chuen_US
dc.date.accessioned2024-8-9T07:39:07Z
dc.date.available2024-8-9T07:39:07Z
dc.date.issued2024
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=109282006
dc.contributor.department物理學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract基於約瑟夫森結的超導電路的最新進展極大地推進量子資訊處理。為了要構建一個全面的基於超導的量子網絡,我們需要一個至關重要的元件:微波量子記憶體。然而,由於大多數超導人造原子缺乏亞穩態,超導電路平台上的光量子記憶體的發展受到阻礙。 在本論文中,我們從理論上研究並實驗實現了波導量子電動力學架構內的一種新型微波記憶體,由單個超導 Xmon 量子位元和耦合高品質諧振器組成,此諧振器可以被認為是電路的合適亞穩態。透過採用參數調變技術,調變量子位元躍遷頻率和以微波直接驅動量子位元躍遷的協同效應可以產生有效的三能階 Λ 型電磁誘發透明。在連續的參數調變下,伴隨的色散曲線被急劇修改,從而使通過此單個 Λ 型人造原子的探測脈衝的速度減慢到3.6 km/s。我們實驗證明透過電磁誘發透明的機制進行參數調變的動態控制,可以允許按需存取微波訊號,且儲存時間可延長至數百奈秒。這種簡單而多功能的裝置凸顯了在超導電路領域實現微波量子記憶體的潛力。 本論文詳細介紹了超導電路中第一個基於電磁誘發透明的微波量子記憶體的動機、理論背景、數值模擬、設計、實現和測量結果。zh_TW
dc.description.abstractRecent progress in Josephson-junction-based superconducting circuits has significantly advanced quantum information processing. To build a comprehensive superconducting-based quantum network, one requires a critical ingredient: microwave quantum memory. However, the development of photonic quantum memory on this platform is hindered by the absence of a metastable state in most superconducting artificial atoms. In this thesis, we theoretically investigate and experimentally realize a novel type of microwave memory within the waveguide quantum electrodynamics architecture, consisting of a single superconducting Xmon qubit and a coupling high-quality resonator. This resonator can be considered a suitable metastable state for the circuit. By employing the parametric modulation technique, the synergy effect of modulating the qubit transition frequency and directly driving the qubit transition with a microwave can create an effective three-level Λ-type electromagnetically induced transparency. The accompanying dispersion profile is sharply modified under the continuous parametric modulation, resulting in the probe pulse passing through this single Λ-type artificial atom at a reduced group velocity of 3.6 km/s. We demonstrate that the dynamical control of such a parametric modulation allows for on-demand microwave storage and retrieval, with a memory time extending to several hundred nanoseconds via electromagnetically induced transparency. This simple yet versatile device highlights the potential of achieving microwave quantum memory within the superconducting circuits community. This thesis details the motivation, theoretical background, numerical simulations, design, implementation, and measurement results of this first electromagnetically-induced-transparency-based microwave quantum memory device in superconducting circuits.en_US
DC.subject超導電路zh_TW
DC.subject量子網絡zh_TW
DC.subject人造原子zh_TW
DC.subject微波量子記憶體zh_TW
DC.subject波導量子電動力學zh_TW
DC.subject參數調變zh_TW
DC.subject電磁誘發透明zh_TW
DC.subjectSuperconducting circuitsen_US
DC.subjectQuantum networken_US
DC.subjectArtificial atomsen_US
DC.subjectMicrowave quantum memoryen_US
DC.subjectWaveguide quantum electrodynamicsen_US
DC.subjectParametric modulationen_US
DC.subjectElectromagnetically induced transparencyen_US
DC.title在超導電路中開發基於電磁誘發透明的微波量子記憶體zh_TW
dc.language.isozh-TWzh-TW
DC.titleDeveloping Microwave Quantum Memory Based on Electromagnetically Induced Transparency in Superconducting Circuitsen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明