博碩士論文 109423054 完整後設資料紀錄

DC 欄位 語言
DC.contributor資訊管理學系zh_TW
DC.creator丁翊軒zh_TW
DC.creatorYi-Hsuan Tingen_US
dc.date.accessioned2022-7-29T07:39:07Z
dc.date.available2022-7-29T07:39:07Z
dc.date.issued2022
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=109423054
dc.contributor.department資訊管理學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract隨著電腦運算速度的提升,許多研究透過深度學習方法來進行Android惡意程式檢測,但是除了惡意程式的二元檢測外,惡意程式家族分類更能夠使惡意程式研究人員了解其惡意家族的行為進而優化檢測方式及預防其變體。然而新出現的惡意程式家族數量少,容易導致分類效果不理想,而基於生成對抗網路的方法來進行擴增雖然可以提升分類效果,但是少量的資料還是會導致生成對抗網路方法所生成出的樣本品質不穩定,進而使分類效果提升有限。因此,本研究提出一種混合擴增方法,首先將提取惡意程式特徵並轉換成RGB圖像,再將樣本數過少的家族先經過高斯雜訊擴增方法(Gaussian Noise),再結合對於圖像擴增有更好效果的深度捲積生成對抗網路(Deep Convolutional Generative Adversarial Network,DCGAN)來擴增少數樣本的惡意程式家族,最後輸入至CNN(Convolutional Neural Network)進行家族分類。實驗結果顯示,使用本研究所提出的混合擴增方法,相較於未擴增以及只使用深度捲積生成對抗網路進行擴增,其F1-Score分別提升7~34%以及2%~7%。zh_TW
dc.description.abstractWith the improvement of computer computing speed, many researches use deep learning for Android malware detection. In addition to malware detection, malware family classification will help malware researchers understand the behavior of the malware families to optimize detection and prevent variants. However, the new malware family has few samples, which lead to poor classification results. Although the deep learning augmentation method (GAN-based) can improve the classification results, but minor data will still lead to the unstable quality of the data generated by the deep learning augmentation method, which will limit the improvement of classification results. In this study, we will propose a hybrid augmentation method, first extracting malware features and converting them into RGB images, and then the minor families will augment by the gaussian noise augmentation method, and then combined with the deep convolutional generative adversarial network (DCGAN) which have better effect on image augmentation, and finally input to CNN for family classification. The experimental results show that using the hybrid augmentation method proposed in this study, compared to no augmentation and augmentation with only using the deep convolutional generative adversarial network, the F1-Score increased between 7%~34% and 2%~7%.en_US
DC.subjectAndroidzh_TW
DC.subject惡意程式檢測zh_TW
DC.subject惡意家族分類zh_TW
DC.subject資料擴增zh_TW
DC.subject混合擴增zh_TW
DC.subject深度學習zh_TW
DC.subjectAndroiden_US
DC.subjectMalware detectionen_US
DC.subjectMalware family classificationen_US
DC.subjectData augmentationen_US
DC.subjectHybrid augmentationen_US
DC.subjectDeep learningen_US
DC.title使用混合RGB圖像擴增技術提升Android小樣本惡意家族分類能力zh_TW
dc.language.isozh-TWzh-TW
DC.titleRGB-based Hybrid Augmentation for Android Minor Malware Family Classificationen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明