dc.description.abstract | In today′s climate change, human burns fossil fuels, over-cultivated forests, and industrial development, increasing greenhouse gases and rapid global warming. To reduce greenhouse gas emissions, using renewable energy has become the development goal of various countries. Solar panels are not only installed off the ground but also integrated into the building envelope as part of the building structure, known as building-integrated photovoltaics (BIPV), making the building itself a large power station. However, in terms of logistics, due to the extensive business of e-commerce, the capacity and quantity of warehouses are constantly increasing. Warehousing activities contribute roughly 11% of the total GHG emissions generated by the logistics sector across the world (Dohery et al, 2009). To integrate renewable energy into warehouses, the study will apply BIPV to warehouses, be integrated into the characteristics of building envelopes. It can reduce warehouse carbon emissions and achieve green warehouses.
Based on the electricity consumption of two different warehouses, this study uses an optimization model to find the solar panels, batteries and electricity, to minimize costs and use 30% of renewable energy. The results showed that the first type of warehouse (using forklifts to store goods) cost $15,424,800. The second type of storage center warehouse (using the AS/RS system to store goods) will cost 8,209,080. However, the price of the battery is too high. This study considers another situation isn’t using the battery. Maximizing the number of solar panels installed to meet the electricity consumption of each phase of the storage center and resell the electricity to Tai-power. The cost of the first storage is only 25% of the original, and the second storage is only 60% of the original. Therefore, the results encourages warehouse to maximize the number of solar panels installed, which can reduce the electricity bills in summer, as helps warehouse owner to accelerate the recovery of the investment in laying solar panels.
Keywords: Sustainable Development, Renewable Energy, Warehouse, Building Integrated Photovoltaic, Storge System | en_US |