dc.description.abstract | In this study, a double pulse test of Schottky p-GaN gate high-electron-mobility transistors has been investigated. Based on the double pulse test, is divided into the following two different sections: (1) Analyzed the changes in dynamic characteristics of the double pulse test with different loads and different measurement conditions, (2) Observed the influence and recovery on the device after a double pulse test with different measurement conditions.
In this paper, the double pulse test is used to study the GaN device, the double pulse test of the inductive load and the resistive load is carried out respectively, and verify the measurement results with a double pulse test simulation close to the actual measurement circuit. An ideal double pulse test circuit is proposed. To confirm the cause of the oscillation, the inductive load circuit is used to simulate the with and without parasitic effects, and the influence of the parasitic effect of the PCB on the simulation is obtained. Different measurement conditions are used for the resistive load double pulse test, and the variations of measurement waveform and parameters caused by different measurement conditions are obtained.
After the resistive load double pulse test, the VTH shift and recovery of the device were investigated with the ID-VGS characteristic curve. Observe the difference between the devices before and after the double pulse test with different external RG and different VDS,off. It is concluded that different external RG will not affect the characteristics after the double pulse test, but are dominated by VDS,off. Through accelerating the recovery by varying the temperature, with the Arrhenius plot, the activation energies of the traps are obtained to be 0.20 and 0.09 eV respectively, and then the results are used in the double pulse test simulation to obtain the mechanism of the ID-VGS shift caused by the double pulse test. | en_US |