博碩士論文 109522144 完整後設資料紀錄

DC 欄位 語言
DC.contributor資訊工程學系zh_TW
DC.creator高廷瑜zh_TW
DC.creatorTing-Yu Gaoen_US
dc.date.accessioned2022-8-3T07:39:07Z
dc.date.available2022-8-3T07:39:07Z
dc.date.issued2022
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=109522144
dc.contributor.department資訊工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract憂鬱症不僅困擾著數億人口,而且還加重了全球殘疾和醫療保健負擔。診斷憂鬱症的主要方法依賴於醫療專業人員在與患者的臨床訪談中的判斷,這是主觀且又耗時的。最近的研究表明,文本、聲音、臉部特徵、心率和眼球運動可用於憂鬱症評估。在本研究中,我們構建了一個虛擬治療師,用於在行動裝置上進行自動化憂鬱症評估,可以通過語音對話主動引導使用者,並透過情緒感知技術變換對話內容。在對話過程中,將文本、聲音、臉部屬性、心率和眼球運動中提取的特徵,使用於多模態憂鬱程度評估。我們利用特徵級融合框架整合五種模態和深度神經網絡,對不同程度的憂鬱症進行分類,包括健康、輕度、中度或重度憂鬱症,以及雙相情感障礙(或稱為躁狂憂鬱症)。經過來自168名受試者的實驗結果證明,具有五個模態特徵的特徵級融合架構之總體準確率達到最高的90.26%。zh_TW
dc.description.abstractDepression not only afflicts hundreds of millions of people but also contributes to a global disability and healthcare burden. The primary method of diagnosing depression relies on the judgment of medical professionals in clinical interviews with patients, which is subjective and time-consuming. Recent studies have demonstrated that text, audio, facial attributes, heart rate, and eye movement could be utilized for depression assessment. In this paper, we construct a virtual therapist for automatic depression assessment on mobile devices that can actively guide users through voice dialogue and change conversation content using emotion perception. During the conversation, features from text, audio, facial attributes, heart rate, and eye movement are extracted for multi-modal depression-level assessment. We utilize a feature-level fusion framework to integrate five modalities and the deep neural network to classify the varying levels of depression, which include healthy, mild, moderate, or severe depression, as well as bipolar disorder (formerly called manic depression). With outcome data from 168 subjects, experimental results reveal that the total accuracy of feature-level fusion with five modal features achieves the highest accuracy of 90.26 percent.en_US
DC.subject虛擬人zh_TW
DC.subject憂鬱識別zh_TW
DC.subject多模態數據融合zh_TW
DC.subjectvirtual humanen_US
DC.subjectdepression recognitionen_US
DC.subjectmulti-modal fusionen_US
DC.titleMobile Virtual Therapist for Multi-Modal Depression-Level Assessmenten_US
dc.language.isoen_USen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明