dc.description.abstract | In the context of microgrid power transmission networks, the occurrence of multiple and abrupt fault alarms can potentially lead to operator misjudgment or a delay of promptly identifying the causes of these faults. This phenomenon leads to an increasing range affected by those faults and induces a negative impact on the stability of the power supply system. To resolve this phenomenon in microgrid systems, the study in this thesis introduces a mechanism which includes multiple functional elements, including XMPP message transmission, backup protection, message prioritization, and scheduling methods. This study designs a simplified testbed of a microgrid environment using Node-RED, where the functionalities of SCADA backup protection and XMPP message transmission are implemented. The SCADA is integrated with message scheduling methods, so that it can facilitate the prioritization of messages and ease the comparison of different message scheduling methods. In addition, the validation of SCADA backup protection and XMPP message transmission is conducted based on the Node-RED platform, while the prioritization of messages and comparison of message scheduling methods can executed by JavaScript.
The effort of this thesis has developed a simplified and lightweight SCADA system that adheres to the XMPP protocol and is capable of integrated backup protection. Because the severity of faults in power systems can vary due to the presence of multiple fault factors, this situation results in differences in the order of relay protection tripping. The SCADA system, equipped with RMS and EDF scheduling algorithms, is capable of arranging and presenting messages based on different scenarios through the simulation of both fault and non-fault conditions. However, the scheduling of the task set may not be guaranteed due to the presence of different periods and deadlines for each message, as well as the varying utilization limits for RMS and EDF. It is important to evaluate the analysis and comparison of various fault scenarios and thus determine the optimal scheduling algorithm between the RMS and EDF for power system fault management. Hence, in order to aid operators in promptly making decisions in response to different scenarios, the proposed XMPP message transmission amd scheduling mechanism can reduce the cost and loss induced by accidents according to better coordination in power system protection. | en_US |