dc.description.abstract | In recent years, governments and private companies worldwide have been increasingly developing satellite missions to return to the Moon or explore other deep space area [deep
space typically refers to area beyond Low Earth Orbit (LEO, which is 300 to 2,000 kilometers above Earth)]. This has led to a rise in rideshare opportunities for deep space missions. However, launching satellites or payloads into deep space environments for mission execution presents several challenges, including more intense ionizing radiation levels and high-energy particles, more extreme temperature variations, and limited data downlink capacity and speed.
To address these challenges, the National Central University (NCU) embarked on the development of a lunar science payload, resulting in the Deep Space Radiation Probe (DSRP).
The DSRP technology builds upon NCU′s previous experience with the 3U cubesat IDEASSat. The DSRP is scheduled to launch to the Moon in Q4 of 2024 aboard the HAKUTO-R Mission 2 lunar lander developed by the Japanese private company ispace. During the mission, the DSRP will measure ionizing radiation dose, dose rate, and single event upset (SEU) rate in the Earth-Moon region, lunar orbit, and on the lunar surface using radiation dosimeters and memory components. The radiation data collected during this mission is expected to aid in the development of future deep space satellite avionics or payloads and further our understanding of the deep space environment and the ionizing radiation environment around the Moon.
This paper will focuses on the flight software design of the DSRP, including mode operation, storage space allocation, software architecture, and command and packet formats. Additionally, to enable the DSRP to withstand various radiation effects in deep space as much as possible, this thesis also presents the results of actual tests conducted for various radiation effects and a discussion of the results. | en_US |