博碩士論文 109683004 完整後設資料紀錄

DC 欄位 語言
DC.contributor太空科學與工程學系zh_TW
DC.creator黃俊雁zh_TW
DC.creatorChun-Yen Huangen_US
dc.date.accessioned2024-10-7T07:39:07Z
dc.date.available2024-10-7T07:39:07Z
dc.date.issued2024
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=109683004
dc.contributor.department太空科學與工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract電離層赤道電漿泡(Equatorial Plasma Bubbles,EPBs),亦被稱為電漿不規則體(Plasma irregularity),經常導致夜間的電離層閃爍效應,其對衛星通信和導航系統有著顯著影響。預測電漿泡之發生對於提高基於衛星定位技術的可靠性至關重要。EPBs的發生主要歸因於瑞利-泰勒(Rayleigh-Taylor,R-T)不穩定性,其中電離層F層底部的垂直電漿密度梯度與向上的電漿漂移相結合,為電離層不穩定性的增長提供了有利條件。線性的R-T不穩定性增長率足以用來代表EPBs形成的電離層條件。因此,本論文主要研究三個部分:(1)探討衛星觀測到的EPBs發生概率全球分布以及季節變化;(2)建立新的R-T不穩定性增長率公式;(3)嘗試連結EPBs發生率與R-T增長率之間的關聯性。 在簡要介紹地球電離層和EPBs以及美國海洋暨大氣總署(NOAA)之自洽耦合大氣與電離層電漿層電動力學模式(WAM-IPE)後,詳細探討與比較了1999—2004年間低傾斜衛星ROCSAT-1、2020年的FORMOSAT-7/COSMIC-2(F7/C2)以及2006—2010年間高傾斜衛星DEMETER觀測到的EPBs經度和季節變化。本論文指出發生在南大西洋區域的非物理異常特徵是由於傳統電漿不規則體自動檢測的公式所導致。使用對數尺度來計算密度擾動,尤其是在環境密度非常低之情況,會導致電漿不規則體的誤判。因此,進一步應用了非線性和非平穩之時頻數據分析方法,即希爾伯特黃轉換(Hilbert-Huang Transform, HHT),來研究電漿不規則體的分佈以及變化。一般來說,希爾伯特黃轉換之瞬時總振幅與F7/C2觀測到的S4閃爍研究一致,這表明希爾伯特黃瞬時總振幅可以作為研究電離層電漿不規則體的良好參考。 基於磁力線積分理論推導出一項全新的R-T不穩定性增長率的表達式。該表達式旨在直接應用於結合了磁通量管結構和修改後的頂點座標系(Modified Apex Coordinates)的電離層模式,其包括磁力線積分電導率和電流的參數,並考慮準偶極坐標系(Quasi-Dipole Coordinates)和基於該坐標系修改後的電動力學方程式。詳細介紹新表達式的發展過程,並對R-T不穩定性增長率的日變化、經度變化和季節變化進行綜合分析,並且檢查了增長率與日落前反轉增強(pre-reversal enhancement,PRE)垂直漂移和太陽活動的依賴性。結果表明,當赤道電離層中存在強烈的PRE時,R-T增長率顯著地發生在當地時間18:00至22:00之間。除此之外,R-T增長率隨著太陽活動強度的增加而增加,且與日落交際線和地磁場線之間的角度有很強之相關性。這些結果與衛星觀測之電漿不規則體發生率的經度與季節變化一致,其表明新開發的R-T增長率在預測EPB的出現方面極具潛力。 根據前人之研究指出,EPB發生率和R-T不穩定增長率分別和PRE垂直漂移在太陽活動極大期間有著接近線性的關係。基於此關係嘗試利用2000年至2002年ROCSAT-1的觀測數據和WAM-IPE的模擬結果,建立EPB發生率與R-T增長率之間的關聯性。HHT瞬時總振幅和σ指數被做為閾值來識別大型EPB的發生。結果顯示,當增長率達到10-4時,發生大規模EPB事件的機率約為55%。然而,由於當前使用的WAM-IPE版本並無法完美地模擬實際電離層結構,在增長率和S4閃爍的比較中存在差異。這表明預測EPB發生仍然具有挑戰性,需要進一步研究。zh_TW
dc.description.abstractEquatorial plasma bubbles (EPBs), also known as plasma irregularities, often result in nighttime scintillations, which significantly impact satellite communication and navigation systems. Understanding and predicting EPB occurrences is crucial for improving the performance and reliability of satellite-based technologies. The occurrence of EPBs is mainly attributed to the Rayleigh-Taylor (R-T) instability, where a strong vertical plasma density gradient at the bottom of the F region and an upward plasma drift combine to produce favorable conditions for plasma instability growth. A linear R-T instability growth rate can be used to represent the ionospheric conditions for EPB formation. Therefore, this dissertation focuses on three parts: (1) satellite observed EPB occurrence probability; (2) newly established R-T instability growth rate; (3) the connection between EPB occurrence rate and R-T instability growth rate. After generally introducing the Earth’s ionosphere and EPBs as well as the self-consistent model coupled Whole Atmosphere Model and Ionosphere Plasmasphere Electrodynamics Model (WAM-IPE), longitudinal and seasonal variation observed by low-inclination satellites ROCSAT-1 during 1999–2004 and FORMOSAT-7/COSMIC-2 (F7/C2) in 2020, as well as a high-inclination satellite, DEMETER, during 2006–2010 are investigated in detail. The nonphysical anomalous feature in south American sector is caused by the limitations of traditional plasma irregularity auto-detections. Calculating perturbations using a logarithmic scale for density would lead to the misidentification of plasma irregularities, particularly when the ambient density is very low. Therefore, the Hilbert-Huang transform (HHT) is further applied to study the morphology of plasma irregularity. In general, the HHT instantaneous total amplitude of irregularity agrees well with previous studies and S4 scintillation observed by F7/C2, indicating that the instantaneous total amplitude can be a good reference for studying ionospheric plasma irregularities. On the other hand, a new expression for the R-T instability growth rate, based on field-line integrated theory, is established. This expression is designed to be directly applicable in ionospheric models that utilize the magnetic flux tube structure with Modified Apex Coordinates. The growth rates of R-T instability are calculated using a self-consistent model: the coupled Whole Atmosphere Model and Ionosphere Plasmasphere Electrodynamics Model (WAM-IPE). The calculation incorporates parameters such as field-line integrated conductivities and currents, taking into account Quasi-Dipole Coordinates and the modified electrodynamics equations. This chapter provides a detailed development of the new equation and a comprehensive analysis of the diurnal, longitudinal, and seasonal variations of the R-T instability growth rate. It also examines the dependencies of growth rates on pre-reversal enhancement (PRE) vertical drifts and solar activity. The results indicate that significant R-T growth rates occur between 18:00 and 22:00 local time when strong PRE is present in the equatorial ionosphere. Additionally, the simulated R-T growth rate increases with higher levels of solar activity and shows strong correlations with the angle between the sunset terminator and the geomagnetic field line. These results are consistent with plasma irregularity occurrence rates observed by various satellites, suggesting that the newly developed R-T growth rate calculation has great potential for predicting the occurrence of EPBs. The relationship between the EPB occurrence rate and the R-T growth rate using ROCSAT-1 observations and WAM-IPE simulations within the time range of 1900~2200 LT during the high solar activity period of 2000~2002 is further investigated. The HHT instantaneous total amplitude and the σ index are used as thresholds to identify large plasma irregularities. The result shows that when the growth rate reaches 10-4 the probability of a deep EPB event occurring is approximately 55%. However, since the current free-run WAM-IPE cannot perfectly simulate the actual ionospheric structure, there are discrepancies in the comparison of the growth rate and S4 scintillation. This indicates that predicting EPB occurrence remains challenging and should be further considered.en_US
DC.subject電離層zh_TW
DC.subject赤道區電漿泡zh_TW
DC.subject衛星觀測zh_TW
DC.subject模式模擬zh_TW
DC.subjectIonosphereen_US
DC.subjectEquatorial Plasma Bubbleen_US
DC.subjectSatellite Observationsen_US
DC.subjectModel Simulationsen_US
DC.title赤道區電漿不規則體與瑞利-泰勒不穩定— 衛星觀測以及模式模擬zh_TW
dc.language.isozh-TWzh-TW
DC.titleEquatorial Plasma Bubbles and Rayleigh-Taylor Instability—Satellite Observations and Model Simulationsen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明