博碩士論文 110221020 完整後設資料紀錄

DC 欄位 語言
DC.contributor數學系zh_TW
DC.creator徐若瑄zh_TW
DC.creatorJO-HSUAN HSUen_US
dc.date.accessioned2023-8-16T07:39:07Z
dc.date.available2023-8-16T07:39:07Z
dc.date.issued2023
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=110221020
dc.contributor.department數學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract影像資料在現今社會中相當常見,然而影像資料的高維度性質使其在分析和處理上遇到很大的挑戰,如何降低資料維度將是一個關鍵問題。為了解決這些問題,降維方法被廣泛應用。近年來保留影像資料之原始張量結構的Kronecker包絡主成分分析(KEPCA)在理論與應用上都受到高度重視。在本論文中我們將建立適用於KEPCA的模型選擇方法。在尖峰模型假設下,我們分別推導了KEPCA在樣本數大於或小於等於參數個數情境下之AIC與BIC。模擬實驗與實際資料分析的結果說明了當資料符合或無嚴重偏離Kronecker乘積結構時,KEPCA在兩種準則上的表現都優於PCA;當資料結構偏離KEPCA時,根據不同的偏離程度最終兩種準則皆會選擇PCA。zh_TW
dc.description.abstractImage data is ubiquitous in today′s society. However, the high dimensionality of image data poses significant challenges in analysis. Dimension reduction techniques have been widely employed to address these issues. In recent years, Kronecker envelope Principal Component Analysis (KEPCA), which preserves the original tensor structure of image data, has gained attention in both theory and applications. In this thesis, we propose model selection methods for KEPCA. Under the assumption of spiked models, we derive the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) for KEPCA in scenarios where the number of samples is greater than, or less than or equal to, the number of parameters, respectively. Simulation studies and empirical data studies confirm that when the data structure is not far from Kronecker product structure, KEPCA outperforms PCA under both criteria. However, when the data deviates from the Kronecker product structure, PCA is preferred instead of KEPCA.en_US
DC.subject赤池訊息準則zh_TW
DC.subject貝氏訊息準則zh_TW
DC.subject維度縮減zh_TW
DC.subjectKronecker包絡zh_TW
DC.subject主成分分析zh_TW
DC.subject維度估計zh_TW
DC.titleKronecker包絡主成分分析模型選擇方法及其應用zh_TW
dc.language.isozh-TWzh-TW
DC.titleModel Selection Methods for Kronecker Envelope Principal Component Analysis and their Applicationsen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明