博碩士論文 110221021 完整後設資料紀錄

DC 欄位 語言
DC.contributor數學系zh_TW
DC.creator葉政叡zh_TW
DC.creatorCheng-Jui Yehen_US
dc.date.accessioned2023-7-20T07:39:07Z
dc.date.available2023-7-20T07:39:07Z
dc.date.issued2023
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=110221021
dc.contributor.department數學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract考慮空間中過原點的若干條直線,若任兩條直線間所形成的夾角只有一種角度,我們稱該集合為等角直線叢。這樣的構造可以由空間中單位球面上的有限點集合(即球面碼)來描述。球面上的離散幾何極值問題有著相當悠久的歷史,知名的問題有吻球數問題、球面上最密堆積問題及能量最小化問題等。在這篇文章中,我們複習目前用來解以上問題的主流方法,即Delsarte的線性規劃及Bachoc-Vallentin的半正定規劃等最佳化方法,並考慮後者的對偶問題來重現歐式空間中維度介於$23$與$60$間且角度為acos(1/5)的等角直線叢的上界。zh_TW
dc.description.abstractEquiangular lines is a set of lines through the origin in the space with a single angle between any two of them. It can be identified as a finite set of points on the sphere which is known as spherical code. The search for extreme structures of spherical codes satisfying certain conditions has a long history in discrete geometry, such as the kissing number problem, Tammes′ problem, and energy minimizing problem. In this paper, we review two effective methods for dealing with those long-standing questions, namely, Delsarte′s linear programming and Bachoc-Vallentin′s semidefinite programming, and use the dual form of the latter to reproduce the bound on equiangular lines of angle acos(1/5) in R^n where 22<n<61.en_US
DC.subject球面碼zh_TW
DC.subject距離集合zh_TW
DC.subject等角直線叢zh_TW
DC.subject半正定規劃zh_TW
DC.subjectspherical codesen_US
DC.subjects-distance setsen_US
DC.subjectequiangular linesen_US
DC.subjectsemidefinite programmingen_US
DC.title多項式方法於等角直線叢上的半正定規劃上界zh_TW
dc.language.isozh-TWzh-TW
DC.titlePolynomial Method in Semidefinite Programming Bounds for Equiangular Linesen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明