博碩士論文 110221024 完整後設資料紀錄

DC 欄位 語言
DC.contributor數學系zh_TW
DC.creator謝欣妤zh_TW
DC.creatorHsin-Yu Heishen_US
dc.date.accessioned2023-12-29T07:39:07Z
dc.date.available2023-12-29T07:39:07Z
dc.date.issued2023
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=110221024
dc.contributor.department數學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract本論文將會整理離散幾何中一個有趣的領域: 等角直線組(equiangular lines)的歷史演進與發展。以1973年 Lemmens-Seidel 的文章為主體,並加入後續的進展,例如 Barg-Yu 證明了24維度之後的半正定規劃的上界,Lin-Yu 對Neumann定理的推廣, Greaves et al 對於14和16維度決定最大條數的結果。我們整理這些相關文獻,把等角直線組的故事與發展說明得更完整,並且詳細寫下相關的例子或構造。本文以Lemmens-Seidel第四節和第五節為重,第四節說明柱(pillar)是甚麼和相關定理證明,第五節討論當角度固定在arccos(1/5)時,會說明上下界會如何變化。zh_TW
dc.description.abstractThis paper dives into an intriguing realm of discrete geometry: the historical evolution and development of equiangular lines. It primarily builds upon the 1973 Lemmens-Seidel paper, incorporating subsequent advancements. For instance, Barg-Yu proved upper bounds for semidefinite programming beyond 24 dimensions, Lin-Yu extended Neumann′s theorem, and Greaves et al revealed results on determining the maximum number of lines in 14 and 16 dimensions. We′ll organize these relevant works, providing a more comprehensive narrative of the equiangular lines′ story and development, while delving into specific examples or constructions. The focus of this paper lies in Lemmens-Seidel′s fourth and fifth sections, the fourth section what a "pillar" is and proves associated theorems, while the fifth section how upper and lower bounds shift when the angle is fixed at arccos(1/5).en_US
DC.subject等角直線zh_TW
DC.subjectEquiangular Linesen_US
DC.title等角直線叢的研究zh_TW
dc.language.isozh-TWzh-TW
DC.titleA Study on Equiangular Linesen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明