博碩士論文 110223073 完整後設資料紀錄

DC 欄位 語言
DC.contributor化學學系zh_TW
DC.creator張詔傑zh_TW
DC.creatorZhao-Jie zHANGen_US
dc.date.accessioned2023-8-17T07:39:07Z
dc.date.available2023-8-17T07:39:07Z
dc.date.issued2023
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=110223073
dc.contributor.department化學學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract染料敏化太陽能電池(DSSC)由於其成本效益、靈活性和理想的穩定性而作為 一種有前景的光伏技術引起了廣泛關注。然而,由於染料分子結構和元件性能之 間的複雜關係,設計高效、穩定的 DSSC 染料敏化劑仍然具有挑戰性。在這項 研究中,我們提出了一種專門為鋅基的紫質染料敏化劑量身定製的可靠且可解釋 的定量結構-性質關係(QSPR)模型。通過將機器學習技術(ML)與密度泛函理論 (DFT) 計算相結合,我們構建了一個包含 140 個分子的資料集。 ML 模型經過 訓練來預測功率轉換效率 (PCE),並使用 Shapley Additive Explanations Theory 進 一步解釋其預測。開發的模型表現出卓越的準確性,通過 10 折交叉驗證並利用 bagging 技術,均方根誤差 (RMSE) 達到 1.09%。利用這個模型,我們對來自眾 所周知且容易獲得的供體和受體的大量分子進行了計算機虛擬篩選。結果,我們 使用這種方法成功鑑定了九種有前景的高 PCE 鋅基的紫質染料。此外,使用 Shapley Additive Explanations Theory 對預測模型的解釋使我們能夠推導出有意義 的化學規則,這有助於製定 DSSC 實際應用的鋅基紫質染料分子設計原則。zh_TW
dc.description.abstractDye-sensitized solar cells (DSSCs) have attracted significant attention as a promising photovoltaic technology due to their cost-effectiveness, flexibility, and desirable stability. However, designing efficient and stable DSSC dye sensitizers remains a challenge due to the sophisticated relationship between molecular structure and device performance. In this study, we propose a reliable and interpretable quantitative structure-property relationship (QSPR) model specifically tailored for zinc-based porphyrin sensitizers. By combining machine learning technique with density functional theory (DFT) calculations, we constructed a dataset comprising 140 data. The ML model was trained to predict the power conversion efficiency (PCE) and its predictions were further interpreted using the Shapley Additive Explanations Theory. The developed model demonstrated remarkable accuracy with a root mean square error (RMSE) of 1.09% achieved through 10-fold cross-validation and utilizing bagging technique. Leveraging this model, we performed in silico virtual screening of a large number of molecules derived from well-known and readily available donors and acceptors. As a result, we successfully identified nine promising zinc-based porphyrin dyes with high PCE using this approach. Additionally, the interpretation of the prediction model using the Shapley Additive Explanations Theory allowed us to deduce III meaningful chemical rules, which can contribute to the formulation of design principles for practical applications of DSSCs utilizing zinc-based porphyrin dyes.en_US
DC.subject紫質zh_TW
DC.subject機器學習zh_TW
DC.subject染料敏化太陽能電池zh_TW
DC.subject理論計算zh_TW
DC.subject密度泛函理論zh_TW
DC.subjectPorphyrinen_US
DC.subjectMachine Learningen_US
DC.subjectDye-Sensitized Solar Cellsen_US
DC.subjecttheoretical calculationen_US
DC.subjectDFTen_US
DC.title透過機器學習加速探索有前景的紫質染料用於染料敏化太陽能電池zh_TW
dc.language.isozh-TWzh-TW
DC.titleExpedited Exploration of Prospective Porphyrin Dye for Dye-Sensitized Solar Cells by Machine Learningen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明