dc.description.abstract | This study focuses on simulating and measuring the absorption response of microplastics to infrared radiation within specific wavelength ranges. During the measurement process, we set up an infrared light source, a collimating lens, and a focusing lens first. Then put the cuvette containing the liquid to be tested on the platform. After the light passes through the sample and focuses onto the detector, the voltage is recorded and analyzed by using a computer instrument control program. Simultaneously, an optical simulation software, ASAP, is used to simulate the optical configuration. By inputting optical parameters of materials at various wavelengths into ASAP, the influence of microplastics on the transmission intensity of infrared light is simulated and compared with the experimental results. In addition, Beer-Lambert law is utilized to calculate the theoretical absorption values, aiming to identify the differences between the simulated and theoretical values.
Based on the simulation results, it is observed that as the quantity of microplastics increases, the intensity of transmitted light decreases, and exhibits a linear relationship. When the number of particles remains constant, the radiant flux at different wavelengths show low correlation with the transmission and absorption coefficients of microplastics. This means that the spectral absorption of microplastics cannot be discerned with the current optical configuration.
The experimental results demonstrate that when the number of microplastics is 1000, the change in transmitted light intensity is approximately 11%. When microplastics are immersed in water, the change in transmitted light intensity increases to 23%. The result from ASAP simulation shows the change in transmitted light intensity around 26%, which closely aligns with the experimental result.
This study has identified the absorption response of microplastics to infrared radiation under a specific optical configuration. It is hoped that the data from this research can be applied to the development of sensors for microplastics detection. | en_US |