博碩士論文 110323056 完整後設資料紀錄

DC 欄位 語言
DC.contributor機械工程學系zh_TW
DC.creator施菀柔zh_TW
DC.creatorWan-Rou Shihen_US
dc.date.accessioned2024-10-1T07:39:07Z
dc.date.available2024-10-1T07:39:07Z
dc.date.issued2024
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=110323056
dc.contributor.department機械工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract為應對氣候危機,各國積極推動綠色再生能源,來減少溫室氣體排放並提高能源效率,氫氣能源因其高效能與環保特性成為主流,水電解產氫利用電能將水分解成氫氣和氧氣的技術,該過程在陽極和陰極上分別進行氧氣析出反應和氫氣析出反應。因此,本研究探討陰離子交換膜水電解技術,該技術不需完全依賴貴金屬,從而降低生產成本,是生產綠氫的理想選擇,有助於減少碳排放,實現能源永續發展。 本研究中,自製陰離子交換膜水電解電極,選用40% Ni on Vulcan XC-72非貴金屬作為陽極觸媒,選用40% Pt on Vulcan XC-72R作為陰極觸媒,離子聚合物溶液使用FumionR FAA-3-SOLUT-10,分散劑則由異丙醇與去離子水組成。本研究透過改變觸媒與離子聚合物的比例以及分散劑的總量,探討其對水電解效能的影響。並組裝陰離子交換膜水電解器,研究不同濃度電解質溶液 (氫氧化鉀溶液) 下的水電解特性。為確保水電解器在長時間運行中保持穩定,本研究亦進行耐久性測試,觀察電解器電解效能隨著時間的變化。 本研究結果顯示,在25 ℃ 操作溫度下,陽極和陰極側的最佳觸媒與離子聚合物比例為 80:20 wt.%,異丙醇與去離子水的最佳比例為200 mg:200 mg。在這些最佳的電極製備條件下,電解器在50°C操作溫度與1.3 M KOH電解溶液條件下,在電壓2.0V時之最佳電流密度為687.36 mA/cm2。同時,耐久性實驗也驗證了隨著時間的推移,電解器的效能會逐漸下降。zh_TW
dc.description.abstractTo address the climate crisis, many countries actively promote green renewable energy to reduce greenhouse gas emissions and improve energy efficiency. Hydrogen energy has become mainstream due to its high efficiency and environmental benefits. Water electrolysis is a technology that uses electrical energy to split water into hydrogen and oxygen, with oxygen evolution occurring at the anode and hydrogen evolution at the cathode. Therefore, this research focuses on anion exchange membrane water electrolysis, which does not rely entirely on precious metals, thereby reducing the costs of green hydrogen production. This method is a promising choice for producing green hydrogen, contributing to the reduction of carbon emissions and achieving sustainable energy development. In this study, the catalyst ink was prepared, with 40% Ni on Vulcan XC 72 (non-precious metal) as the anode catalyst, and 40% Pt on Vulcan XC 72R (precious metal) as the cathode catalyst. The ionomer solution added in the ink was FumionR FAA-3-SOLUT-10, and the dispersant is consisted of isopropanol and deionized water. The effects of the catalyst to ionomer ratio and the total amount of dispersant on water electrolysis performance were investigated. Additionally, an anion exchange membrane water electrolyzer was assembled, and the water electrolysis performance under different concentrations of electrolyte solution (potassium hydroxide solution) was studied. To ensure the electrolyzer′s stability during prolonged operation, durability tests were conducted to observe changes in electrolyzer performance over time. The results show that the optimal catalyst to ionomer ratio at the operating temperature of 25°C is 80:20 wt.% for both anode and cathode sides, with an isopropanol to deionized water ratio of 200 mg:200 mg. Under these optimal catalyst preparation conditions, the electrolyzer achieves an optimal current density of 687.36 mA/cm2 at 2.0V, under 50°C and 1.3 M KOH electrolyte solution. Additionally, the experiments confirmed that the performance of the electrolyzer gradually decreases over time.en_US
DC.subject陰離子交換膜水電解zh_TW
DC.subject電極觸媒塗佈法zh_TW
DC.subject非貴金屬觸媒zh_TW
DC.subject離子聚合物zh_TW
DC.subject電解耐久性zh_TW
DC.subject綠氫生產zh_TW
DC.subjectAnion exchange membrane water electrolysisen_US
DC.subjectCatalyst -Coated Substrate layeren_US
DC.subjectNon-precious metal catalysten_US
DC.subjectIonomeren_US
DC.subjectElectrolysis Durabilityen_US
DC.subjectGreen Hydrogen Productionen_US
DC.title陰離子交換膜水電解電極觸媒塗佈之製程改善研究zh_TW
dc.language.isozh-TWzh-TW
DC.titleImprovement of the Catalyst Coated Substrate Fabrication Method for Anion Exchange Membrane Water Electrolyzersen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明