博碩士論文 110323062 完整後設資料紀錄

DC 欄位 語言
DC.contributor機械工程學系zh_TW
DC.creator陳宜楷zh_TW
DC.creatorYi-Kai Chenen_US
dc.date.accessioned2023-7-24T07:39:07Z
dc.date.available2023-7-24T07:39:07Z
dc.date.issued2023
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=110323062
dc.contributor.department機械工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract甲烷熱裂解是一種 產氫技術,在高溫下將甲烷分解成碳和氫氣,被廣泛應用於許多工業領域,產生的碳為固態碳,因此不會有二氧化碳的排放,但在實際上它的商業化仍面臨一些挑戰,包括高溫條件下的能源需求和反應器耐久性。本研究對聚光型太陽能渦流反應器進行一種新型設計,透過添加多孔材結構,改變反應氣體流動及溫度分布,增進效能。本研究透過計算流體動力學(CFD)進行模擬分析,深入了解反應器內部流場,探討內部流體之熱傳、質傳、化學反應等物理現象。 本研究使用ANSYS Fluent建模,主要分為多孔材結構分析與參數靈敏度模擬分析兩大部分進行討論在多孔材結構模擬分析中發現,不論是圓柱形多孔材或是空心圓柱形多孔材,兩種設計都可以提高 CH4轉化率,當圓柱形多孔材孔隙率為 0.9時,最大CH4轉化率超過主要原因是因為多孔材的應用可以大幅提高部分區域的流體溫度,且多孔材的設計可以增加停留時間,拉長 CH4反應時間,探討停留時間和溫度對轉化率的影響。 再來是對操作參數進行靈敏度分析,找出影響溫度之主要參數取決於太陽輻射輸入功率同時 探討其他實驗參數影響溫度之原因。zh_TW
dc.description.abstractMethane pyrolysis is a hydrogen production technology that involves the decomposition of methane into carbon and hydrogen gas at high temperatures. It is widely applied in various industrial sectors. The produced carbon is in solid form, resulting in no emissions of carbon dioxide. However, the commercialization of this technology still faces challenges, including the energy requirements and durability of the reactor under high-temperature conditions. In this study, a new design of a concentrating solar-powered vortex reactor with the addition of a porous material structure is proposed to enhance the efficiency. By modifying the gas flow and temperature distribution within the reactor, the performance can be improved. Computational fluid dynamics (CFD) simulations are employed to gain insights into the flow field and to study the thermal transfer, mass transfer, and chemical reactions within the reactor. ANSYS Fluent is used for modeling in this study, which is divided into two main parts: analysis of the porous material structure and simulation of parameter sensitivity. In the analysis of the porous material structure, it is found that both cylindrical and hollow cylindrical porous materials can enhance CH4 conversion rates. When the porosity of the cylindrical porous material is 0.9, the maximum CH4 conversion rate exceeds 98%. This is mainly due to the application of the porous material, which significantly increases the fluid temperature in certain regions and extends the residence time, thereby prolonging the CH4 reaction time. The influence of residence time and temperature on conversion rates is investigated. Sensitivity analysis of operational parameters is also performed to identify the main factors affecting temperature, which are found to be dependent on solar radiation input power. Additionally, the reasons behind the influence of other experimental parameters on temperature are explored.Overall, this study proposes a novel design for a concentrating solar-powered vortex reactor with a porous material structure to enhance the efficiency of methane thermal cracking. Computational fluid dynamics simulations are used to gain insights into the internal flow field and investigate various physical phenomena such as heat transfer, mass transfer, and chemical reactions.en_US
DC.subject多孔材zh_TW
DC.subject甲烷zh_TW
DC.subject熱裂解zh_TW
DC.subject數值分析zh_TW
DC.subject太陽能zh_TW
DC.subject氫氣zh_TW
DC.title聚光型太陽能輔助高溫甲烷裂解產氫之研究zh_TW
dc.language.isozh-TWzh-TW
DC.titleResearch on Concentrated Solar Power-Assisted High- Temperature Methane Cracking for Hydrogen Productionen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明