dc.description.abstract | Traditional worm manufacturing typically involves using turning and grinding processes. However, with the advancement of power skiving technology, it is now possible to use power skiving for the production of small module worms in addition to the internal gears. This paper begins by utilizing gear theory and differential geometry to simulate the cutting motion of five different types of worms, namely ZA-type, ZN-type, ZI-type, ZK-type, and ZC-type, and derives mathematical models of five types of worms. Using these mathematical models of five types of worms along with the cutting motion relationships in power skiving and equation of meshing, mathematical models of the edge profiles of the power skiving tools are established. Furthermore, the grinding wheels design for grinding these cutters are derived through the motion relationships involved in grinding the cutters.
To validate the grinding wheels and cutters design process in this study, an optimization program is first employed to fit NURBS curves to the grinding wheel and confirm the accuracy of the fit. Subsequently, the fitted grinding wheel profile is transferred to the design of the edge profile of the power skiving tool, which is then used to cut the five types of worms. The tooth profile error between the worms cut with the designed tools and the theoretical worms is calculated to verify the correctness of the tool profile.
Regrinding the tools can effectively extend their lifespan. Therefore, the study explores the impact of changes in the amount of regrinding on the tooth profile error and accuracy of the worms, with DIN 7 class as the target accuracy level. The tooth profile error and accuracy of the five types of worms cut with the designed tools are calculated for different amounts of regrinding to analyze the effect on accuracy. To determine the applicability of the designed tools, different parameters for the five types of worms are cut using these tools, and their errors and accuracy are calculated. The variations in the effective regrinding amount are also investigated. | en_US |