博碩士論文 110323113 完整後設資料紀錄

DC 欄位 語言
DC.contributor機械工程學系zh_TW
DC.creator李敬得zh_TW
DC.creatorJing-Der Leeen_US
dc.date.accessioned2024-8-23T07:39:07Z
dc.date.available2024-8-23T07:39:07Z
dc.date.issued2024
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=110323113
dc.contributor.department機械工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract本研究提出使用電化學加工(Electrochemical Machining, ECM)結合永久性環狀磁鐵所形成之磁場,用以輔助加工去除金屬工件微孔之毛邊,以及孔壁表面之拋光,並以此研究工件加工後孔內之平整度。所得實驗數據包括表面粗糙度Ra、擴孔量、表面形貌以及氧化膜量測等結果,並為後續進行陣列孔加工研究取得適當之加工參數,最終希望能有高產能、高品質之陣列孔電化學加工與內壁拋光製程之成果。實驗將以SUS 304不銹鋼為主要的加工研究材料,進行單孔與陣列孔電化學拋光時,所需要之製程規劃與參數研究。為因應各種產品對於陣列孔加工之去毛邊與內孔壁拋光之需求,本研究將提出以電化學加工法於不銹鋼工件上之陣列微特徵內孔壁拋光,由於陣列微孔數量多、孔徑小,透過電極模具的設計與製作,以及有限元素模型建立流場、電場等狀態分析,並探討其不同參數之設定,例如磁場有無、磁場強度、磁場方向、電解液流速、加工電壓電流等參數變化對加工效果之影響,達到高加工精度以及提高加工效率之效果。而從實驗結果可知,在單孔參數實驗中,磁場強度與電場強度在加工時有著密切關連,磁場越強且加工電壓越高時,拋光加工效率則有所提升,在陣列孔加工實驗中,有加入磁場相比未加入磁場之陣列孔電化學拋光實驗,孔徑均勻度改善了4.33%,而孔壁表面粗糙均勻度則改善了9.72%。另外,此加工法還有望顯著減少加工工件夾持治具的開發週期,提升加工品質,進一步滿足大規模快速生產、高效率和高產能的特性,為電化學微孔的加工技術之研究和發展提供有力的支持。zh_TW
dc.description.abstractThis study proposes using Electrochemical Machining (ECM) combined with a magnetic field generated by permanent ring magnets to assist in removing burrs from metal workpieces′ micro-holes and polishing the hole wall surfaces. The research aims to evaluate the surface flatness of the workpieces after machining. Experimental data includes surface roughness (Ra), hole expansion amount, surface morphology, and oxidation film measurements. The study seeks to establish appropriate machining parameters for subsequent research on array hole processing, ultimately aiming for high productivity and quality in array hole electrochemical machining and inner wall polishing processes. The experiments will use SUS 304 stainless steel as the primary material for processing research, focusing on process planning and parameter studies required for single-hole and array hole electrochemical polishing. To meet various product requirements for burr removal and inner wall polishing of array holes, this research will propose an electrochemical machining method for polishing the inner walls of array micro-features on stainless steel workpieces. Given the numerous small-diameter array micro-holes, the study will involve designing and fabricating electrode molds and establishing finite element models to analyze fluid flow and electric fields. It will investigate the effects of various parameters, such as the presence and intensity of the magnetic field, magnetic field direction, electrolyte flow rate, machining voltage, and current, on machining outcomes to achieve high precision and improved efficiency. From the experimental results, it is evident that in single-hole parameter experiments, there is a close relationship between magnetic field strength and electric field intensity during machining. Higher magnetic field strength and machining voltage enhance polishing efficiency. In array hole machining experiments, adding a magnetic field improved hole diameter uniformity by 33.3% compared to experiments without a magnetic field, and the surface roughness of the hole walls improved by 6.45%. Additionally, this machining method is expected to significantly reduce the development cycle of workpiece fixtures, enhance machining quality, and further meet the characteristics of large-scale rapid production, high efficiency, and high productivity, providing strong support for research and development in electrochemical micro-hole machining technology.en_US
DC.subject電化學拋光加工zh_TW
DC.subject微孔陣列zh_TW
DC.subject磁場輔助zh_TW
DC.subjectElectrochemical polishingen_US
DC.subjectmicro-hole arraysen_US
DC.subjectmagnetic-field assistanceen_US
DC.title磁場輔助電化學加工法於不銹鋼陣列微孔拋光之研究zh_TW
dc.language.isozh-TWzh-TW
DC.titleResearch on Magnetic Field-Assisted Electrochemical Polishing of Array Microholes in Stainless Steelen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明