DC 欄位 |
值 |
語言 |
DC.contributor | 化學工程與材料工程學系 | zh_TW |
DC.creator | 陳昭耿 | zh_TW |
DC.creator | Chao-Keng Chen | en_US |
dc.date.accessioned | 2023-7-26T07:39:07Z | |
dc.date.available | 2023-7-26T07:39:07Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | http://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=110324017 | |
dc.contributor.department | 化學工程與材料工程學系 | zh_TW |
DC.description | 國立中央大學 | zh_TW |
DC.description | National Central University | en_US |
dc.description.abstract | 在過去的幾十年裡,地球的溫度越來越高,如何減緩全球變暖的方法變得至關重要。 氣體分離是一個具有巨大發展潛力的新興領域。 模分離技術是一個造價相對低廉且不複雜的工藝。如何在提升氣體滲度率的同時提升氣體分離效率成了一個重要的議題。混合基質膜(mixed matrix membranes)能在不提高成本的情況下 ,提高膜的分離效率。
磁場是一種超距力,可以在不直接接觸的情況下作用於帶電粒子。 在有限的距離內,磁場可以產生相對均勻的力場,從而實現材料的有效排列。 在這項研究中,芳香族聚合物在磁場下排列的獨特特性被用來提高聚苯並咪唑 (polybenzimidazole, PBI) 膜及其 MMM 的性能。在成膜過程中,施加磁場以重新排列 PBI 及其 MMM,從而提高性能。 在純膜階段,磁場增加了膜的表面粗糙度,同時實現了更均勻和缺陷減少的結構,從而提高了氣體滲透性和選擇性。 在 MMM 階段,由於磁場,PBI 的有效對齊促進了二氧化矽的 -OH 基團和 PBI 的 -NH 基團之間形成氫鍵,從而使二氧化矽在膜內分佈更均勻,不受重力的影響而均勻分布在PBI中。
本研究證明了磁場的應用如何有效地提高芳香族聚合物在膜製造中的性能,從而改善氣體分離性能。 通過利用磁場的排列能力,這種方法為開發具有增強氣體滲透性和選擇性的分離膜提供了新的可能性。 | zh_TW |
dc.description.abstract | In recent decades, as the global temperature has risen, the problem of global warming has become increasingly urgent. Gas separation is a promising field for mitigating this issue. Membrane separation technology offers a cost-effective and simple process. However, improving gas permeability and selectivity has become a critical challenge. Mixed matrix membranes (MMMs) provide a solution by increasing separation efficiency.
Magnetic field, a long-range force, can affect charged particles without direct contact. Magnetic fields enable efficient material alignment by creating a uniform force field over a limited range. This research utilizes the unique property of aromatic polymers to ignite under a magnetic field to enhance the performance of polybenzimidazole (PBI) and their MMMs. During membrane formation, the magnetic field aligned the PBI and its MMMs, resulting in improved performance. At the pure-membrane stage, the magnetic field increases surface roughness, promoting a more uniform and defect-reduced structure, which enhanced gas permeability and selectivity. In the MMM stage, the effective alignment of PBI promotes the hydrogen bonding between the silica′s -OH groups and PBI′s -NH groups, leading to a more even distribution of silica within the membrane, unaffected by the gravity, and uniformly dispersed in PBI.
This study demonstrates that magnetic fields can effectively enhance the performance of aromatic polymers in membrane fabrication for improved gas separation capabilities. By exploiting magnetic alignment, this approach opens up the possibility to develop advanced membranes with enhanced gas permeability and selectivity. | en_US |
DC.subject | 全球暖化 | zh_TW |
DC.subject | 氣體分離 | zh_TW |
DC.subject | 混合基質薄膜 | zh_TW |
DC.subject | 磁場 | zh_TW |
DC.subject | Global warming | en_US |
DC.subject | gas separation | en_US |
DC.subject | mixed matrix membrane | en_US |
DC.subject | magnetic field | en_US |
DC.title | 磁場誘導混合基質膜聚合物基質排序以增強氣體傳輸性能 | zh_TW |
dc.language.iso | zh-TW | zh-TW |
DC.title | Magnetic field-induced alignment of polymer matrix in mixed matrix membranes for enhanced gas transport performance | en_US |
DC.type | 博碩士論文 | zh_TW |
DC.type | thesis | en_US |
DC.publisher | National Central University | en_US |