dc.description.abstract | With technology and population growth, environmental and energy concerns are increasing. Among various renewable energy sources, solar energy has emerged as a leading green energy solution due to its ubiquity, sustainability, and low environmental impact. However, solar panels have a limited lifespan, and improper disposal can pose environmental hazards. Therefore, the recycling and reuse of solar panels have become crucial. Solar panels typically consist of solar cells, aluminum frames, and ethylene-vinyl acetate (EVA) components, with the solar cells predominantly composed of silicon (Si). Silicon, with its non-toxic nature, abundance, high theoretical capacity (4200 mAh/g), and low voltage platform (0.2-0.3 V), shows promise as a negative electrode material for lithium-ion batteries. However, silicon undergoes significant volume expansion/contraction during charging and discharging, leading to rapid capacity degradation. To address this issue, this study employed an economical and efficient ball milling and calcination process to convert recycled solar panel powder into negative electrode material. By adjusting the calcinating temperature to observe the residual EVA content and optimizing the sequence of ball milling and calcination, Si/SiOx material was prepared and combined with carbon paper current collector for application in lithium batteries. The optimal parameters were defined as calcinating at 500°C followed by ball milling at 300 rpm, resulting in a capacity of 1170 mAh/g after 100 cycles. Considering the demand for commercial negative electrode materials, in this study, silicon was combined with graphite to prepare Si/SiOx/C composite material. The results showed that a Si/C composite ratio of 1:0.6, combined with a crosslinking binder, resulted in a capacity of 488 mAh/g. To further enhance the performance, different ratios of ethanol were added as a solvent during slurry mixing to assist in the dispersion of Si particles and prevent aggregation. The results indicated that a water:ethanol ratio of 4:2 exhibited the best electrochemical performance, with a capacity of 748 mAh/g after 100 cycles. These results demonstrate that this study successfully utilizing recycled solar panels and transformed them into Si/SiOx/C composite material using a low-cost and efficient ball milling and annealing process. The performance was further improved through the use of a crosslinking binder and ethanol-assisted dispersion, providing high-performance charge-discharge behavior on copper foil current collectors. | en_US |