DC 欄位 |
值 |
語言 |
DC.contributor | 財務金融學系 | zh_TW |
DC.creator | 張瀚 | zh_TW |
DC.creator | Han Chang | en_US |
dc.date.accessioned | 2023-2-1T07:39:07Z | |
dc.date.available | 2023-2-1T07:39:07Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | http://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=110428008 | |
dc.contributor.department | 財務金融學系 | zh_TW |
DC.description | 國立中央大學 | zh_TW |
DC.description | National Central University | en_US |
dc.description.abstract | 本文研究比特幣報酬與風險之間的關係,並以Corsi (2009) 提出之異質自我迴歸已實現波動率 (Heterogeneous Autoregressive Model of Realized Volatility, HAR-RV) 模型計算波動率,透過引入具有長記憶 (long memory)特性的條件變異估計式,來分析加密貨幣市場之風險報酬抵換關係。使用2018年1月至2022年9月期間之比特幣的五分鐘日內高頻資料,同時考慮上、下行風險以及COVID-19流行期間造成金融市場動盪之影響,實證結果顯示比特幣的風險與報酬之間存在顯著的正向關係,同時投資人在面對下行風險時會要求更高的報酬,此現象在COVID-19流行期間尤其明顯。 | zh_TW |
dc.description.abstract | This thesis studies the risk-return relationship in the cryptocurrency market and uses the Heterogeneous Autoregressive Model of Realized Volatility (HAR-RV) proposed by Corsi (2009) to calculate the volatility. The HAR-RV model is a conditional variance estimator with the feature of long memory. Using the five-minute intraday high-frequency data of Bitcoin from January 2018 to September 2022, we measure upside and downside risks and take the impact of COVID-19 into account. The empirical results provide evidence of a significant positive relationship between the risk and return of Bitcoin, and investors incline to require higher returns when facing downside risks, especially during the COVID-19 epidemic. | en_US |
DC.subject | 比特幣 | zh_TW |
DC.subject | 跨期資本資產定價模型 | zh_TW |
DC.subject | 異質自我迴歸已實現波動率 | zh_TW |
DC.subject | 下行風險 | zh_TW |
DC.subject | 風險報酬關係 | zh_TW |
DC.subject | 高頻資料 | zh_TW |
DC.title | 比特幣風險與報酬之抵換關係 | zh_TW |
dc.language.iso | zh-TW | zh-TW |
DC.title | Risk-Return Relationship in the Cryptocurrency Market | en_US |
DC.type | 博碩士論文 | zh_TW |
DC.type | thesis | en_US |
DC.publisher | National Central University | en_US |