博碩士論文 110521082 完整後設資料紀錄

DC 欄位 語言
DC.contributor電機工程學系zh_TW
DC.creator黃育城zh_TW
DC.creatorYu-Cheng Huangen_US
dc.date.accessioned2023-8-3T07:39:07Z
dc.date.available2023-8-3T07:39:07Z
dc.date.issued2023
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=110521082
dc.contributor.department電機工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract本論文對於微電網的能源管理最佳化進行了深入的分析和探討,介紹了微電網的結構和調度模型,並提出了一種結合深度確定性策略梯度(Deep Deterministic Policy Gradient, DDPG)與長短期記憶(Long Short-Term Memory, LSTM)負載預測模型的經濟調度方法,旨在實現微電網的最優調度控制。首先,利用LSTM網路來預測微電網的負載信息,以確定發電機輸出與儲能系統的充放電策略;其次,利用DDPG來實現微電網的最佳化經濟調度,為了驗證結果是否符合電力潮流限制,採用位於台灣澎湖群島的七美島微電網模型進行研究,並將所提出的方法與基於經驗的能量管理系統、牛頓結合粒子群體法和深度Q網路(Deep Q Network, DQN)進行比較;最後,通過使用OPAL-RT即時模擬器和浮點數位訊號處理器構建的硬體迴圈(Hardware In the Loop, HIL)系統,充分驗證和展現所提出方法的有效性。zh_TW
dc.description.abstractThis study presents an in-depth analysis and exploration of energy management optimization in microgrid. It introduces the structure and scheduling model of microgrid and proposes an economic dispatch method that combines Deep Deterministic Policy Gradient (DDPG) and Long Short-Term Memory (LSTM) load forecasting model to achieve optimal dispatch control in microgrid. Firstly, the LSTM network is utilized to predict the load information in microgrid, determining the output of power generator and the charging/discharging control strategy of a battery energy storage system. Secondly, DDPG is employed to optimize the economic dispatch of the microgrid. To verify the results against power flow constraints, a study is conducted using Cimei Island microgrid model located in the Penghu Islands, Taiwan. The proposed method is compared with experience-based energy management systems, Newton-particle swarm optimization, and Deep Q-Network (DQN). Finally, the effectiveness of the proposed method is fully validated and demonstrated through the Hardware In the Loop (HIL) system, which is built using OPAL-RT real-time simulator with floating-point digital signal processor.en_US
DC.subject經濟調度zh_TW
DC.subject微電網zh_TW
DC.subject負載預測zh_TW
DC.subject長短期記憶zh_TW
DC.subject深度強化學習zh_TW
DC.subject確定性策略梯度zh_TW
DC.subject能源管理系統zh_TW
DC.subject牛頓粒子群優化zh_TW
DC.subject深度Q網路zh_TW
DC.subjectEconomic dispatchen_US
DC.subjectmicrogriden_US
DC.subjectload forecastingen_US
DC.subjectlong short-term memoryen_US
DC.subjectdeep reinforcement learningen_US
DC.subjectdeep deterministic policy gradient, energy management systemen_US
DC.subjectenergy management systemen_US
DC.subjectNewton-particle swarm optimizationen_US
DC.subjectdeep Q-networken_US
DC.title以OPAL-RT硬體迴圈實現基於深度強化學習演算法與負載預測模型之微電網經濟調度zh_TW
dc.language.isozh-TWzh-TW
DC.titleImplementation of Microgrid Economic Dispatch Based on Deep Reinforcement Learning Algorithms and Load Forecasting Model Using OPAL-RT Hardware in the Loopen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明