dc.description.abstract | With the rapid development of fields such as the Internet of Things (IoT), artificial intelligence (AI), and autonomous driving, the demand for storage technology has become
increasingly crucial today. The emerging Non-Volatile Memory (eNVM) will play an indispensable role in the future. The main feature of NVM lies in its capacity to maintain the
original storage state after power-off, while also requiring good scalability, high speed, low power consumption, and excellent reliability. This makes eNVM an essential device of future data storage and processing.
In this work, we focused on common ferroelectric memories within NVM, specifically the Ferroelectric Capacitor (FeCAP) and Ferroelectric Field-Effect Transistor (FeFET). We began with the process of devices, then proceeded to evaluate and compare them through both material analysis and electrical property measurement. Finally, we proposed a method to repair the trapping charges at the interface and effectively remove the unexpected carbon elements generated during low-temperature thin film deposition by utilizing H2 plasma.
We evaluated the effect of remote H2 plasma treatment on improving the performance of FeFETs based on HfZrO (HZO). Through X-ray photoelectron spectroscopy (XPS), H2 plasma reduced the C concentration in the insulating layer, effectively decreasing it from the original 34% to 17.9%. This treatment also improved the trapping charge caused by
oxygen vacancies. It accelerated oxygen diffusion between AlOx and Si, enhancing the dielectric properties of the interfacial layer. Moreover, it increased the breakdown field from 11MV/cm to 12.4MV/cm compared to untreated samples. Furthermore, the H2 plasma-treated FeFET exhibited stable retention and improved endurance, with no failures occurring even after reaching 1010 cycles. Finally, to accelerate device failure time, we increased the temperature and estimated device retention. We found that devices treated with H2 plasma paired with a superlattice structure of HZO exhibited 18°C higher retention compared to traditional silicon-based FeFETs, reaching 97.3°C. This high-temperature thermal stability behavior is correlated with the ordered arrangement of the HfO2/ZrO2 super-lattice. In this structure, the thermal conductivity of HZO is significantly enhanced, thereby improving the high-temperature retention of the devices. This research holds significant importance for the development of high-speed, low-power FeFETs and enhances the understanding of FeFET
operation mechanisms. | en_US |