博碩士論文 110522032 完整後設資料紀錄

DC 欄位 語言
DC.contributor資訊工程學系zh_TW
DC.creator吳睿哲zh_TW
DC.creatorRei-Zhe Wuen_US
dc.date.accessioned2023-7-26T07:39:07Z
dc.date.available2023-7-26T07:39:07Z
dc.date.issued2023
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=110522032
dc.contributor.department資訊工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract失語症是一種嚴重影響患者語言能力的疾病。 主要原因通常是中風,但也可能由其他因素引起,例如腦外傷、腫瘤和退化。 患者最常見的臨床表現包括找詞困難、導致言語錯誤、用其他詞替換目標詞以及聽覺理解、閱讀和寫作方面的困難。失語症的常見診斷方法包括臨床量表和非侵入性腦刺激,例如重複經顱磁刺激(rTMS)結合強化語言訓練。 前一種方法比較主觀,需要語言治療師的專業評估,而後者則費用更高。 因此,有效且客觀的診斷方法對於語言治療至關重要。本研究提出了一種評估失語症的自動化方法。 本實驗採用機器學習(ML)設計自動評估的算法模型,結合自主研發的VR語言訓練模塊,從任務執行中獲取行為和生理信息。 通過機器學習分析患者在各種語言任務訓練中的表現和情況。 研究結果將從統計分析和機器學習兩個方面進行討論。在統計分析中,我們將對正常個體和失語症患者之間的多模態生理和遊戲任務特徵進行Mann-Whitney U檢驗,與正常個體相比顯示出許多顯著差異(p < 0.05)。 在機器學習方面,評估結果表現良好,所有模型都達到了80%以上的準確率。zh_TW
dc.description.abstractAphasia is a disease that can seriously affect the language abilities of patients. The primary cause is usually stroke, but it can also be caused by other factors such as brain trauma, tumors, and degeneration. The most common clinical manifestations in patients include difficulty finding words, leading to speech errors, substituting target words with other words, and difficulties with auditory comprehension, reading, and writing.Common diagnostic methods for aphasia include clinical scales and non-invasive brain stimulation, such as repetitive transcranial magnetic stimulation (rTMS), combined with intensive language training. The former method is more subjective and requires professional evaluation from a speech therapist, while the latter is more expensive. Therefore, an effective and objective diagnostic method is crucial for language therapy.This study proposes an automated method for evaluating aphasia. In this experiment, machine learning (ML) is used to design an algorithm model for automatic assessment, combining self-developed VR language training modules to obtain behavioral and physiological information from task execution. The performance and situations of patients in various language task training are analyzed through machine learning. The research results will be discussed from two aspects: statistical analysis and machine learning.In the statistical analysis, we will conduct a Mann-Whitney U test on the multimodal physiological and game task features between normal individuals and aphasia patients, showing many significant differences compared to normal individuals (p < 0.05). In the machine learning aspect, the evaluation results show good performance, with all models achieving over 80% accuracy.en_US
DC.subject失語症zh_TW
DC.subject語言治療zh_TW
DC.subject數位治療zh_TW
DC.subject人工智慧zh_TW
DC.subject虛擬實境zh_TW
DC.subjectAphasiaen_US
DC.subjectLanguage Therapyen_US
DC.subjectDigital Therapyen_US
DC.subjectArtificial Intelligenceen_US
DC.subjectVirtual Realityen_US
DC.title使用虛擬現實語言互動遊戲進行基於機器學習的失語症評估與治療zh_TW
dc.language.isozh-TWzh-TW
DC.titleMachine Learning based Aphasia Assessment and Treatment using Virtual Reality Language Interactive Gameen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明