博碩士論文 110552021 完整後設資料紀錄

DC 欄位 語言
DC.contributor資訊工程學系在職專班zh_TW
DC.creator饒珮以zh_TW
DC.creatorPei-Yi Jaoen_US
dc.date.accessioned2025-1-21T07:39:07Z
dc.date.available2025-1-21T07:39:07Z
dc.date.issued2025
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=110552021
dc.contributor.department資訊工程學系在職專班zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract本研究以指紋特徵比對系統為驗證案例,探討結合 MIAT 方法論系統設計與大型語言模型的系統設計和高階合成方法。MIAT 方法論著重在系統的階層式模組化的架構設計,以及演算法的離散事件建模,最後合成可維護、可擴展的系統程式碼。在方法論的最後階段,我們引進大型語言模型生成每個離散事件狀態所驅動所需要的程式碼。為了驗證這個方法,我們設計了指紋特徵比對系統的階層模組,包括旋轉排除模組、線段方向排除模組及特徵比對模組。實驗部分,基於FVC2004 指紋資料集進行系統性能測試,透過不同比對演算法如Minutia 與FLANN 的比較,驗證了系統在準確性與運行效率上的表現。實驗結果顯示在模組化設計下,各模組的獨立性和可靠性得到了充分驗證。大型語言模型在程式碼生成中的應用,提升了開發效率並降低人為錯誤的風險。此研究不僅對於指紋辨識技術的進一步發展具有啟發性,也提供了一種創新的系統設計方法,適用於其他高複雜度的軟體開發領域。zh_TW
dc.description.abstractThis research uses a fingerprint feature matching system as a validation case to explore system design and high-level synthesis methods that combine MIAT methodology with Large Language Models (LLMs). The MIAT methodology focuses on hierarchical modular architecture design and discrete event modeling of algorithms, ultimately synthesizing maintainable and scalable system code. In the final stage of the methodology, we introduce LLMs to generate the necessary code driven by each discrete event state. To validate this approach, we designed hierarchical modules for the fingerprint feature matching system, including rotation elimination module, segment direction elimination module, and feature matching module. For experimentation, we conducted system performance testing based on the FVC2004 fingerprint dataset, comparing different matching algorithms such as Minutia and FLANN to validate the system′s performance in terms of accuracy and operational efficiency. The experimental results demonstrated that under the modular design, the independence and reliability of each module were thoroughly validated. The application of LLMs in code generation improved development efficiency and reduced the risk of human error. This research not only provides insights for further development of fingerprint recognition technology but also offers an innovative system design method applicable to other complex software development domains.en_US
DC.subjectMIAT 方法論zh_TW
DC.subject指紋比對zh_TW
DC.subject離散事件建模zh_TW
DC.subject高階合成zh_TW
DC.subject大型語言模型zh_TW
DC.title整合MIAT方法論與大型語言模型於系統設計:以指紋比對系統為案例研究zh_TW
dc.language.isozh-TWzh-TW
DC.titleIntegration of MIAT Methodology and Large Language Models for System Design:A Case Study of Fingerprint Matching Systemen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明