dc.description.abstract | Peritoneal dialysis (PD) was a renal replacement therapy against end-stage renal diseases. Long-term use of high-glucose dialysate could induce mesothelial-to-mesenchymal transition (MMT) in peritoneal mesothelial cells, resulting in peritoneal fibrosis (PF). Encapsulating peritoneal sclerosis (EPS) is a rare complication of end-stage renal disease for long-term of PD treatment. EPS formation has been confirmed to make peritoneum thicker and fibrotic, which causes the formation of fibrous cocoon wrapping bowel leading intestinal obstruction. EPS have been reported to be improved with corticosteroids, tamoxifen, or immunosuppressive agents, but the mortality rate for EPS was still high (25%–55%). Compare with other types of mesenchymal stem cells, WJMSCs (Wharton’s jelly mesenchymal stem cells) had the high yield of exosomes in previous report. Exosomes have been reported to deliver important information such as miRNAs, mRNAs, and proteins into the target cells and to mediate the biological behaviors. Our previous study showed that the expressions of miR-17-5p, miR-155-5p, miR-202-3p, miR-422a, and miR-483-5p could identify EPS in peritoneal effluent. In our study, the conditioned medium of WJMSC cells was treated with Triton X-100, RNase A alone or combination in order to test these miRNAs are released as the free form or encapsulated into exosomes. The results showed that miR-17-5p was wrapped with membrane such as exosomes instead of being released directly and miR-17-5p expression was abundant in WJMSC-derived exosome. Next, WJMSC-derived exosomes was isolated with 3D-scaffolds, and we found that the yield of exosomes with a 3D-scaffold was larger than 2D-culture. In our result, Mesothelial-to-mesenchymal transition (MMT) induced by TGF-β1 in human mesothelial cells (MeT-5A) could be inhibited after 20 µg/ml WJMSC-derived exosome treatment, which was investigated by down-regulation of mesenchymal marker (MMP-2 and Vimentin) and inhibition of cellular morphological changes by measurement of five cellular metrics (Size, Area, Length, Perimeter, Circularity). MMP-2, Vimentin expressions and cellular morphological changes were decreased after treatment of miR-17-5p-overexpressed exosomes. As stated above, exosomal miR-17-5p from WJMSC was a one of mediators to decrease MMT induced by TGF-β1 in MeT-5A. In our previous study, we found that miR-17-5p and miR-483-5p were potential miRNA candidates for EPS. Therefore, we investigated that whether miR-17-5p-overexpressed exosomes and miR-483-5p-overexpressed exosomes and combination of miR-483-5p-overexpressed exosomes and miR-17-5p-overexpressed exosomes could reduce the MMT progression induced by TGF-β1 in MeT-5A. In our result, miR-17-5p-overexpressed exosomes and miR-483-5p-overexpressed exosomes and combination of two different overexpressed exosomes could reduce cellular morphological changes induced by TGF-β1. Additionally, miR-17-5p-overexpressed exosomes could down-regulate the mesenchymal marker (MMP-2) and miR-483-5p- overexpressed exosomes could down-regulate the mesenchymal marker (TypeΙcollagen, MMP-2 and α-SMA). Most importantly, compare with single miRNA-overexpressed exosomes, combination of two different overexpressed exosomes could inhibit the expressions of mesenchymal marker (TypeΙcollagen, MMP-2) more effectively. In regard to contractile activity of collagen gel in human mesothelial cell (MeT-5A), miR-17-5p-overexpressed exosomes could attenuate the TGF-β1 induced contractile activity by measurement of collagen gel contraction assay, but miR-483-5p-overexpressed exosomes and combination did not. As stated above, the combination of miR-483-5p-overexpressed exosomes and miR-17-5p-overexpressed exosomes also could be a potential role for reducing MMT progression. In the future, we will continue to explore the mechanism of miR-17-5p and miR-483-5p-overexpressed exosomes in MMT induced by TGF-β1. | en_US |