博碩士論文 111221002 完整後設資料紀錄

DC 欄位 語言
DC.contributor數學系zh_TW
DC.creator周大豐zh_TW
DC.creatorDa-Feng Chouen_US
dc.date.accessioned2024-7-23T07:39:07Z
dc.date.available2024-7-23T07:39:07Z
dc.date.issued2024
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=111221002
dc.contributor.department數學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract本研究旨在利用深度學習方法對阿茲海默症患者進行分類,探索分析不同深度學 習模型在分類任務中的表現。 本研究收集了來自醫療公開數據庫來源的MRI影像數據,並使用多種深度學習方 法進行分析。具體而言,我們應用了Keras提供的卷積神經網路(CNN)的預訓練模 型,以提高分類的準確性和穩定性。在數據預處理階段,我們對數據進行了標準化處 理,並且用OpenCV此套件對數據影像進行切割腦室與海馬體。實驗結果表明,基於 深度學習的方法在阿茲海默症分類中具有顯著的優勢,能夠有效區分阿茲海默症患者。zh_TW
dc.description.abstractWith the acceleration of global aging, Alzheimer’s Disease (AD) has become a signifi cant public health issue. Accurate classification of AD is crucial for developing personalized treatment plans and prognosis evaluations. This study aims to classify Alzheimer’s disease patients by using deep learning methods and explore the performance of different deep learning models in classification tasks. The study collected MRI image data from publicly available medical databases and an alyzed it by using various deep learning methods. We applied pre-trained convolutional neu ral network (CNN) models provided by Keras to improve classification accuracy and stability. During the data preprocessing stage, we standardized the data and used the OpenCV library to segment the ventricles and hippocampus in the images. The experimental results indicate that deep learning-based methods have significant advantages in Alzheimer’s disease classification and can effectively distinguish Alzheimer’s disease patients.en_US
DC.subject深度學習zh_TW
DC.subject卷積神經網路zh_TW
DC.subject預訓練模型zh_TW
DC.subject阿茲海默症zh_TW
DC.title利用遷移式學習對於腦部MRI影像之阿茲海默症疾病分類zh_TW
dc.language.isozh-TWzh-TW
DC.titleClassification of Alzheimer′s disease in brain MRI images using transfer learningen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明