DC 欄位 |
值 |
語言 |
DC.contributor | 數學系 | zh_TW |
DC.creator | 陳宗興 | zh_TW |
DC.creator | Tsung-Hsing Chen | en_US |
dc.date.accessioned | 2024-7-10T07:39:07Z | |
dc.date.available | 2024-7-10T07:39:07Z | |
dc.date.issued | 2024 | |
dc.identifier.uri | http://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=111221003 | |
dc.contributor.department | 數學系 | zh_TW |
DC.description | 國立中央大學 | zh_TW |
DC.description | National Central University | en_US |
dc.description.abstract | 在本論文中,我們提出了一種修改的投影方法,利用物理信息神經網絡來求解不可壓縮的納維-斯托克斯方程。我們首先應用有限差分法結合投影方法來解決泰勒-格林渦旋,並將結果與解析解進行比較。我們的結果表明,該方法能夠以二階收斂速率準確預測泰勒-格林渦旋的流動和壓力場。隨後,我們使用結合投影方法的物理信息神經網絡來解決泰勒-格林渦旋。然而,我們的實驗結果表明,直接使用投影法會導致速度場的預測結果較差。為了解決這個問題,我們提出了一種修改的投影方法,同時求解流體函數和勢函數,並通過流體函數來更新速度場。我們的數值結果表明,這種方法能夠在方形、橢圓形和L形區域中準確預測泰勒-格林渦旋的流動和壓力場。 | zh_TW |
dc.description.abstract | In this thesis, we propose a modified projection method for solving the incompressible Navier-Stokes equations using physics-informed neural networks (PINNs). We begin by applying the finite difference method combined with the projection method to solve the Taylor- Green vortex and compare the results with the analytical solution. Our results demonstrate that this approach accurately predicts the flow and pressure fields of the Taylor-Green vortex with a second-order convergence rate. We then use PINNs with the projection method to solve the Taylor-Green vortex. However, our experimental results indicate that, direct usage of the projection method leads to poor prediction results of the velocity field. To address this, we propose a modified projection method that simultaneously solves the stream function and potential function. Our numerical results show that this approach accurately predicts the flow and pressure fields of the Taylor-Green vortex in square, ellptical and L-shaped domains. | en_US |
DC.subject | 物理信息神經網絡 | zh_TW |
DC.subject | 納維-斯托克斯流 | zh_TW |
DC.subject | 泰勒-格林渦旋 | zh_TW |
DC.subject | Physics-Informed Neural Network | en_US |
DC.subject | Navier-Stokes Flows | en_US |
DC.subject | Taylor-Green vortex | en_US |
DC.title | 物理信息神經網絡求解二維納維-斯托克斯流 | zh_TW |
dc.language.iso | zh-TW | zh-TW |
DC.title | Physics-Informed Neural Network Approach for Solving 2D Navier-Stokes Flows | en_US |
DC.type | 博碩士論文 | zh_TW |
DC.type | thesis | en_US |
DC.publisher | National Central University | en_US |