DC 欄位 |
值 |
語言 |
DC.contributor | 數學系 | zh_TW |
DC.creator | 宋狄謙 | zh_TW |
DC.creator | Di-Chian Sung | en_US |
dc.date.accessioned | 2025-1-17T07:39:07Z | |
dc.date.available | 2025-1-17T07:39:07Z | |
dc.date.issued | 2025 | |
dc.identifier.uri | http://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=111221014 | |
dc.contributor.department | 數學系 | zh_TW |
DC.description | 國立中央大學 | zh_TW |
DC.description | National Central University | en_US |
dc.description.abstract | 在這篇文章中,我們討論兩種GLn(C)有限維的不可約表現之建構方式: Weyl 模和Highest weight定理。結果我們發現,Weyl模並不涵蓋所有GLn(C)的有限維不可約表現,比如說,對偶表現無法透過Weyl模來建構。因此,我們將透過其他的建構方式,來明確地刻劃出所有GLn(C)的有限維不可約表現。 | zh_TW |
dc.description.abstract | There are two constructions of irreducible finite-dimensional representations of GLn(C):
Weyl modules and Highest weight theory. It turns out that Weyl modules don’t give us all irreducible finite-dimensional representations of GLn(C). For example, dual representations are not included in Weyl modules. In this article, we explicitly describe all irreducible finite-dimensional representations of GLn(C) that don’t arise from Weyl modules. | en_US |
DC.subject | 不可約表現 | zh_TW |
DC.subject | Weyl模 | zh_TW |
DC.subject | 最高權重 | zh_TW |
DC.subject | Irreducible representations | en_US |
DC.subject | Weyl modules | en_US |
DC.subject | Highest weight | en_US |
DC.title | GLn(C)的不可約表現建構方式之討論 | zh_TW |
dc.language.iso | zh-TW | zh-TW |
DC.title | On Some Constructions of Irreducible Representations of GLn(C) | en_US |
DC.type | 博碩士論文 | zh_TW |
DC.type | thesis | en_US |
DC.publisher | National Central University | en_US |