博碩士論文 111225008 完整後設資料紀錄

DC 欄位 語言
DC.contributor統計研究所zh_TW
DC.creator陸彥廷zh_TW
DC.creatorYen-Ting Luen_US
dc.date.accessioned2024-7-10T07:39:07Z
dc.date.available2024-7-10T07:39:07Z
dc.date.issued2024
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=111225008
dc.contributor.department統計研究所zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract本研究從兩個角度討論高維度資料聚類。首先,我們從理論上解釋了相似網絡融合(SNF)對聚類的影響。人們發現,SNF 透過融合從不同特徵集計算出的相似性矩陣,可以增強許多應用中的聚類性能。所提出的理論解釋有助於更深入地理解融合的功能及其限制。接下來,我們提出了一個由多元邏輯迴歸和高維度資訊標準組成的迭代過程(以 SF-MLR 表示),以從大量特徵集中識別高影響力的聚類特徵。我們將SF-MLR 應用於幾個高維度資料集。數值結果表明,SF-MLR 可以識別高影響力的聚類特徵,這也有助於提高聚類性能。zh_TW
dc.description.abstractThis study discusses high-dimensional data clustering from two perspectives. First, we provide a theoretical explanation of the effect of similarity network fusion (SNF) on clustering. The SNF has been found to enhance clustering performances in many applications by fusing the similarity matrices computed from different feature sets. The proposed theoretical explanation helps a deeper understanding of how the fusion functions and where its limitations are. Next, we propose an iterative procedure consisting of multinomial logistic regression and high-dimensional information criterion, denoted by SF-MLR, to identify high-impact clustering features from a vast feature set. We apply the SF-MLR to several high-dimensional datasets. The numerical results reveal that the SF-MLR can identify high-impact clustering features, which also helps to improve clustering performances.en_US
DC.subject聚類zh_TW
DC.subject融合zh_TW
DC.subject高維度資訊準則zh_TW
DC.subject多元邏輯迴歸zh_TW
DC.subjectclusteringen_US
DC.subjectfusionen_US
DC.subjecthigh-dimensional information criterionen_US
DC.subjectmultinomial logistic regressionen_US
DC.titleSNF效應的理論解釋和高影響力聚類特徵的識別zh_TW
dc.language.isozh-TWzh-TW
DC.titleTheoretical Explanation of the SNF Effects and Identification of High-Impact Clustering Featuresen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明