博碩士論文 111225023 完整後設資料紀錄

DC 欄位 語言
DC.contributor統計研究所zh_TW
DC.creator賴龍斌zh_TW
DC.creatorLong-Bin Laien_US
dc.date.accessioned2024-7-11T07:39:07Z
dc.date.available2024-7-11T07:39:07Z
dc.date.issued2024
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=111225023
dc.contributor.department統計研究所zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract本文探討了能源市場中的拍賣行為,使用多代理模型進行模擬。我們將電力供應商和消費者建模為自主代理,他們在多代理環境中做出決策以最大化其效用。然而,由於代理之間的信息不足,每個代理都難以實現其最佳決策。為了解決這個問題,我們提出使用納許Q學習,它結合了納許均衡和Q學習,以在考慮其他代理出價行為的同時最大化每個參與者的效用。在多個案例研究中,我們證明了納許Q學習算法能夠確保參與者最終達到納許均衡。zh_TW
dc.description.abstractThis paper explores auction behavior in the energy market using a multi-agent model. We model electricity suppliers and consumers as autonomous agents who make decisions to maximize their utilities in a multi-agent environment. However, due to insufficient information between the agents, each agent faces difficulty achieving his/her optimal decision. To address this issue, we propose using Nash Q-learning, consisting of Nash equilibrium and Q-learning, to maximize each participant′s utility while considering the bidding behavior of the other agents. In several case studies, we demonstrate that the Nash Q-learning algorithm ensures participants eventually reach the Nash equilibriums.en_US
DC.subject納許均衡zh_TW
DC.subjectQ學習zh_TW
DC.subject強化學習zh_TW
DC.subjectNash equilibriumen_US
DC.subjectQ-learningen_US
DC.subjectreinforcement learningen_US
DC.title利用強化學習探索可再生能源交易市場中的參與者策略zh_TW
dc.language.isozh-TWzh-TW
DC.titleExploring Participant Strategies in Renewable Energy Trading Markets Using Reinforcement Learningen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明