博碩士論文 111225027 完整後設資料紀錄

DC 欄位 語言
DC.contributor統計研究所zh_TW
DC.creator林祥曆zh_TW
DC.creatorSiang-Li Linen_US
dc.date.accessioned2024-7-10T07:39:07Z
dc.date.available2024-7-10T07:39:07Z
dc.date.issued2024
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=111225027
dc.contributor.department統計研究所zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract主成分分析(PCA)是一種廣泛運用於資料預處理步驟中的降維方法,但在低信噪比的高維資料分析中,PCA的性能可能受到限制。為了解決這個問題,先前的研究提出了Kronecker包絡主成分分析(KEPCA)可作為PCA的替代方法。在本文中,我們介紹了Wang et al.(2024)在高維度理論中提出的KEPCA的一致性和漸近常態性,同時,我們經由模擬實驗和實際資料分析將其與經典PCA進行比較,逕而驗證了理論結果。zh_TW
dc.description.abstractPrincipal Component Analysis (PCA) is a widely used dimension reduction method in data preprocessing, but its performance may be limited in the analysis of high-dimensional data with low signal-to-noise ratios. To address this issue, previous research proposed Kronecker Envelope Principal Component Analysis (KEPCA) as an alternative to PCA. In this article, we introduce the consistency and asymptotic normality of KEPCA, which is proposed by Wang et al.(2024) and we compare it with classical PCA through simulation experiments and real data analysis.en_US
DC.subject漸近常態性zh_TW
DC.subject維度縮減zh_TW
DC.subject高維度小樣本zh_TW
DC.subjectKronecker包絡zh_TW
DC.subject主成分分析zh_TW
DC.title高維度環境下Kronecker包絡主成分分析的漸近性zh_TW
dc.language.isozh-TWzh-TW
DC.titleOn the asymptotics of the Kronecker envelope principal component analysis in high-dimensional settingsen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明