DC 欄位 |
值 |
語言 |
DC.contributor | 光電科學與工程學系 | zh_TW |
DC.creator | 喬瑟夫 | zh_TW |
DC.creator | Joseph Agnel Romario Ravindran | en_US |
dc.date.accessioned | 2025-2-13T07:39:07Z | |
dc.date.available | 2025-2-13T07:39:07Z | |
dc.date.issued | 2025 | |
dc.identifier.uri | http://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=111226601 | |
dc.contributor.department | 光電科學與工程學系 | zh_TW |
DC.description | 國立中央大學 | zh_TW |
DC.description | National Central University | en_US |
dc.description.abstract | 本研究有兩個部分. 第一部分是驗證所使用的波前感測器是否針對這項工作進行了熱校準. 無熱化波前感測器將補償微透鏡陣列 (MLA) 膨脹、橫向位移、互補金屬氧化物半導體 (CMOS) 位移和材料的熱膨脹,並最大限度地減少熱應力條件下的像差。一種方法是證明熱補償後WFS影像位置的位移差異被有效縮小.
第二部分是透過實驗和理論來測量溫度每升高一度系統的焦移量. 儘管線性平台配備了光柵編碼器,但仍使用外差干涉儀來測量奈米精度的位移,因為連接到平台會經歷熱膨脹。使用乾涉儀的原因是它獨立於系統. 使用鼓風機將載物台加熱到所需的溫度條件,並將載物台熱膨脹引起的位移記錄在μmD2界面中,這就是載物台熱位移. 同時,使用鏡頭製造商公式計算光學中的焦移,並使用非熱化波前感測器透過重複捕捉熱條件下的影像位置 Z 來驗證計算結果. 總之,非熱化波前感測器在不同的熱條件下提供穩健、可靠和精確的性能,使其在無法保證環境穩定性的關鍵光學應用中不可或缺.
關鍵字:外差干涉儀、Shack Hartmann 波前感測器、焦距移動、熱校準. | zh_TW |
dc.description.abstract | This study has two sections. The first section is to verify that the Wavefront sensor being used is thermally calibrated for this work. Athermalized Wavefront sensor will compensate for the Micro Lens Array (MLA) expansion, lateral shift, Complementary Metal Oxide Semiconductor (CMOS) shift, and Thermal expansion of materials and minimize the aberration under thermal stress conditions. One way is to prove that the Displacement difference of the WFS image position is scaled down effectively after Thermal compensation.
The second part is to measure the amount of focal shift in the system per degree rise in temperature both experimental as well as theoretical. A heterodyne interferometer is used to measure the displacements in Nanometer precision even though the Linear stage is equipped with Grating encoders Since attached to the stage will experience Thermal expansion. The reason for using an Interferometer is it is independent of the system. The stage is heated to the required temperature condition using an air blower and the displacement caused by the thermal expansion of the stage is recorded in the μmD2 interface which is the stage Thermal shift. Meanwhile, the focal shift in the optics is calculated using Lens maker formula and the calculated result is verified using an Athermalized Wavefront sensor by capturing the Image position Z under Thermal conditions repeatedly. In summary, athermalized wavefront sensors provide robust, reliable, and precise performance across varying thermal conditions, making them indispensable in critical optical applications where environmental stability cannot be guaranteed.
Keywords: Heterodyne Interferometer, Shack Hartmann Wavefront sensor, Focal Shift, Thermal Calibration. | en_US |
DC.subject | One keyword per line | zh_TW |
DC.subject | 波前感測器 | zh_TW |
DC.subject | 外差干涉儀 | zh_TW |
DC.subject | 熱應力 | zh_TW |
DC.subject | 熱補償 | zh_TW |
DC.subject | 焦點偏移 | zh_TW |
DC.subject | One keyword per line | en_US |
DC.subject | Wavefront sensor | en_US |
DC.subject | Heterodyne Interferometer | en_US |
DC.subject | Thermal stress | en_US |
DC.subject | Thermal compensation | en_US |
DC.subject | Focal shift | en_US |
DC.title | Measurement of Stage Displacement under thermal stress using Heterodyne Interferometer and Verify with Athermalized Shack Hartmann Wavefront sensor | zh_TW |
dc.language.iso | zh-TW | zh-TW |
DC.title | Measurement of Stage Displacement under thermal stress using Heterodyne Interferometer and Verify with Athermalized Shack Hartmann Wavefront sensor | en_US |
DC.type | 博碩士論文 | zh_TW |
DC.type | thesis | en_US |
DC.publisher | National Central University | en_US |