博碩士論文 111226603 完整後設資料紀錄

DC 欄位 語言
DC.contributor光電科學與工程學系zh_TW
DC.creator金亞煇zh_TW
DC.creatorKim Nhat Huyen_US
dc.date.accessioned2024-12-30T07:39:07Z
dc.date.available2024-12-30T07:39:07Z
dc.date.issued2024
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=111226603
dc.contributor.department光電科學與工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract本研究分析四種癌症(乳癌、子宮內膜癌、肺癌、胰腺癌)的人體血漿,利用表面增強拉曼光譜(Surface-Enhanced Raman Spectroscopy, SERS)結合機器學習,目的是要開發高速、精準的血液感測晶片。我們採用的SERS結構含有多層InGaN量子井,根據69例血漿檢體(乳癌10例、子宮內膜癌10例、肺癌29例、胰臟癌10例、健康對照組10例)的分析結果,本技術能有效檢測出這四種癌,準確率可達96%。zh_TW
dc.description.abstractThis research focuses on analyzing human plasma associated with four cancers (breast, endometria, lung, pancreas), using the surface-enhanced Raman spectroscopy (SERS) integrated with machine learning for prediction and classification. The SERS structure comprises multiple InGaN quantum wells. According to the test results of 69 clinical cases (10 cases of breast cancer, 10 cases of endometrial cancer, 29 cases of lung cancer, 10 cases of pancreatic cancer, and 10 cases of health control), our technique can quickly identify the types of cancer with the average prediction accuracy of 96%.en_US
DC.subject臨床診斷zh_TW
DC.subject癌症zh_TW
DC.subject氮化物半導體zh_TW
DC.subject量子阱zh_TW
DC.subject表面增強拉曼光譜zh_TW
DC.subject機器學習zh_TW
DC.subjectclinical diagnosisen_US
DC.subjectcanceren_US
DC.subjectnitride semiconductoren_US
DC.subjectquantum wellen_US
DC.subjectsurface-enhanced Raman spectroscopyen_US
DC.subjectmachine learningen_US
DC.title以機器學習搭配表面增益拉曼光譜診斷癌症zh_TW
dc.language.isozh-TWzh-TW
DC.titleApplying Machine Learning in Surface-Enhanced Raman Spectroscopy for Cancer Diagnosisen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明