博碩士論文 111322003 完整後設資料紀錄

DC 欄位 語言
DC.contributor土木工程學系zh_TW
DC.creator陳漢興zh_TW
DC.creatorHan-Xing Chenen_US
dc.date.accessioned2024-7-23T07:39:07Z
dc.date.available2024-7-23T07:39:07Z
dc.date.issued2024
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=111322003
dc.contributor.department土木工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract臺灣位於環太平洋地震帶上,受到板塊擠壓作用的影響導致地震頻繁,常有致災型地震發生。鋼筋混凝土(Reinforced Concrete,RC)建築是台灣主要的建築結構材料,其受震反應是一重要的研究課題,尤其是在反覆載重下RC柱能否有效地發揮其韌性,是房屋耐震能力的重要指標。為了解RC柱的遲滯行為,一般多採用反覆載重分析。然而反覆載重若採實驗所需的成本高、採用數值分析則多有數值不穩定的問題需要反覆的進行參數校正。為了更有效地了解RC柱的遲滯反應,本研究提出一種基於深度學習技術的條件生成對抗網路(Conditional Generative Adversarial Networks,CGAN)來預測不同設計條件下的RC柱遲滯迴圈。本研究共蒐集257組RC柱反覆載重試驗之數據,並分別訓練CGAN、CDCGAN、CWGAN-GP三種不同的條件生成對抗網路模型對不同破壞型式控制的試體進行預測,用以探討最適用之模型。研究結果顯示使用CWGAN-GP有最好的IoU(Intersection Over Union)。此外,本研究探討2種數值型標籤之物理條件所生成之遲滯迴圈,結果顯示採用10種設計RC柱設計參數較僅採用1種剪力強度比做為條件所生成的遲滯迴圈有較高的IoU及迴圈力學表現,因此本研究根據此結果,期望在未來能夠提供有需求的民眾或結構工程師一種快速且低成本的分析方法,使其無須進行反覆載重試驗,便能獲得準確遲滯迴圈。zh_TW
dc.description.abstractTaiwan is located on the Pacific Ring of Fire, which results in frequent earthquakes and sometimes loss of life. Reinforced Concrete (RC) building is the most widely used building type in Taiwan. The behavior of RC columns under seismic loads is hence critical, especially their seismic capacity and energy dissipation performance. Cyclic loading tests are commonly used to understand the hysteretic behavior of RC columns. However, experimental test is costly, and numerical analysis, on the other hand, is easy to suffer from numerical instability issues and hence requires repeatedly calibration of parameters. To address it, this study proposes a deep learning technique based on the conditional Generative Adversarial Networks (CGAN) to predict the hysteretic behavior of RC columns. This study collects experimental data from 257 cyclic loading tests on RC columns. Three different conditional generative adversarial network models—CGAN, CDCGAN, and CWGAN-GP—are investigated to identify the optimal model for predicting the hysteretic loops with various failure modes. The result shows that CWGAN-GP has the highest IoU (Intersection Over Union) and hence is recommended. On the other hand, Different conditions are also assessed to optimize the prediction performance, and the result reveals that the general RC design parameters are more suitable than a single shear strength ratio. Based on these results, this study hopes to provide a rapid and low-cost analysis method for the public and structural engineers in the future. This method would allow them to obtain accurate hysteresis loop analysis without the need for repetitive load testing.en_US
DC.subject鋼筋混凝土柱zh_TW
DC.subject遲滯迴圈zh_TW
DC.subject物理條件zh_TW
DC.subject條件生成對抗網路zh_TW
DC.subjectReinforced concrete columnsen_US
DC.subjectHysteretic loopsen_US
DC.subjectPhysical conditionsen_US
DC.subjectConditional Generative Adversarial Networksen_US
DC.title條件生成對抗網路於鋼筋混凝土柱遲滯迴圈預測之開發與應用zh_TW
dc.language.isozh-TWzh-TW
DC.titleDevelopment and Application of Conditional Generative Adversarial Networks for Predicting Hysteretic Loops of Reinforced Concrete Columnsen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明