博碩士論文 111322023 完整後設資料紀錄

DC 欄位 語言
DC.contributor土木工程學系zh_TW
DC.creator顏祥倫zh_TW
DC.creatorXiang-Lun Yanen_US
dc.date.accessioned2024-7-29T07:39:07Z
dc.date.available2024-7-29T07:39:07Z
dc.date.issued2024
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=111322023
dc.contributor.department土木工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract由於,用過核燃料具有長半衰期的特性,必須使其與人類文明和自然生態永久隔離,至其放射性不再對生物產生重大危害。因此,將退役核燃料以特殊容器包裹,並埋入深地層中做最終處置,是目前全球公認最佳的處置方法。 然而,深地層核燃料處置場當中的熱-水-力耦合現象(Thermal-Hydro-Mechanical Coupling, THM),是影響處置場安全的一大變因。在進行建造前,需要進行適當的數值模擬以了解此現象對於處置場的安全影響。本研究利用有限元素軟體ABAQUS來進行處置場的熱-水-力耦合現象之模擬分析,探討用過核燃料所產生的衰變熱對於周圍溫度、水力場、應力場的影響。 本研究第四章參考SKB與Posiva所針對水平向處置法(KBS-3H)的THM現象之聯合研究報告[1],並進行平行驗證,當中包含溫度場、孔隙水壓與飽和度場的平行驗證分析,其中,溫度場平行驗證與原始文獻的結果接近,而飽和度、孔隙水壓的驗證與原始文獻二維模型結果的差異都在兩年以內。其次,在無裂縫帶存在的情況下,本文分析的隧道頂、底部之最小主應力增量歷時與原始文獻結果相近,此外,在第五章中也會加入不同厚度、位置、熱傳導係數、彈性模數的水平裂縫帶來進行參數分析,並觀察出在裂縫帶的熱傳導係數低於母岩之情況下,裂縫帶的增厚、熱傳導係數的降低會造成處置場峰值溫度的升高,此效應也會導致隧道壁的最小主應力增量有上升的情況;而裂縫帶厚度增加、彈性模數減小會提升處置隧道岩壁的最小主應力極值;水平裂縫帶與隧道之間的距離越近,也會提升隧道壁的最小主應力極值,但若裂縫帶在一定距離之外則沒有明顯的影響。zh_TW
dc.description.abstractDue to high radioactivity of the spent nuclear fuel, to deposit it properly is an important issue. The almost recommended way is to store the radioactive waste in a specially designed copper canister and isolate it permanently in an underground deposition. However, the complex thermal-hydro-mechanical coupling (THM) crucially affects the safety of the underground deposition. Conducting a rigorous numerical analysis is necessary to understand the effect of THM processes before construct the underground deposition. In this study, using the finite element software ABAQUS simulates how the decay heat generated by the nuclear fuel influences the temperature ,stress field and degree of saturation around the periphery of deposition. Firstly ,in chapter 4, a parallel verification simulation about the evolution of temperature ,saturation ,pore pressure field and the change in min. principal stress field in a KBS-3H deposition drift will be conducted and compared to a report completed by SKB and Posiva to ensure the accuracy of the numerical model. The results of verification simulation show some similarity with the base case in the joint research report by SKB and Posiva. In chapter 5, a sensitivity analysis about the effect of the horizontal fracture included a series cases of different thickness, position, heat conductivity and elastic modulus will be tested. Horizontal fracture in different condition will be added into the simulation and set around the KBS-3H deposition. The results indicate that the temperature in deposition rises if the thickness of fracture increases or the heat conductivity decreases when the value of heat conductivity of the fracture is lower than the intact rock ,this effect further causes the min. principal stress in the tunnel wall to increase. The min. principal stress in the tunnel wall also be influenced by the change in thickness, elastic modulus of the fracture. The min. principal stress increases if the thickness increases or the elastic modulus decreases, but if the fracture locates some distances away from the deposition, this effect is not significant.en_US
DC.subject熱-水-力耦合現象zh_TW
DC.subject用過核子燃料之處置法zh_TW
DC.subjectKBS-3Hzh_TW
DC.subjectThermal-Hydro-Mechanical Coupling(THM)en_US
DC.subjectUnderground Deposition of the Spent Nuclear Fuelen_US
DC.subjectKBS-3Hen_US
DC.title含裂縫帶之用過核子燃料深地層水平向處置法之近場熱-水-力耦合數值模擬zh_TW
dc.language.isozh-TWzh-TW
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明