dc.description.abstract | 3D printed concrete is an innovative technology with the potential to transform construction methods. Its primary advantages include increasing construction speed, reducing labor demands, and offering greater design flexibility. With 3D printing, it is possible to create more complex and precise architectural structures, which are difficult to achieve with traditional construction methods. However, this technology currently faces several challenges. First, there are material issues: 3D printed concrete requires specific formulations to ensure proper flowability and curing time during the printing process. Selecting the right materials is therefore a crucial aspect. If software analysis is performed before printing, it can help reduce structural defects caused by poor material and structural choices, thereby minimizing material waste due to printing errors.
This study aims to use Abaqus finite element analysis software to simulate 3D printed concrete, investigating the effects of different sizes, printing speeds, shapes and materials on the printing process and the final structural performance. By establishing models of 3D printed concrete with varying sizes, the study analyzes the stress distribution, deformation behavior, and structural stability. Additionally, it compares the effects of different printing speeds and materials on the structural performance of the concrete mortar to determine the optimal printing parameters. A systematic standard operating procedure (Standard Operating Procedure, SOP) is also developed in this study, providing a standardized reference for subsequent research to improve research efficiency and result reproducibility.
The Abaqus simulation of 3D printed concrete developed in this study not only saves the materials and time required for actual printing but also enhances design accuracy and construction efficiency. This provides strong support for the widespread application of 3D printed concrete technology. | en_US |