dc.description.abstract | In the era of global Industry 4.0, the development of many automated equipment and robots has been spurred, among which harmonic reducers play a significant role in industrial equipment. Harmonic drive are favored for their advantages of lightweight, high reduction ratio, small size, and ability to generate large torque, making them highly suitable for use in robotic arms and robots. They are also widely used in industries such as aerospace equipment and medical devices. However, the design of tooth shape and transmission performance in harmonic reducers is crucial, with transmission performance indicators including torsional stiffness, hysteresis loss, backlash, transmission error, etc.The purpose of this study is to analyze and experimentally verify the transmission performance of silk hat-type harmonic drive. Firstly, a mathematical model of harmonic gears is established, and Finite Element Analysis (FEA) is conducted based on the reverse-provided harmonic drive model from a collaborating company, considering the deformation of the wave generator flexible bearing. Through FEA analysis, the torsional stiffness, hysteresis loss, backlash, transmission error, and tooth contact stress of the harmonic drive were determined. The performance differences between rigid body wave generators and flexible bearings in terms of tooth surface contact stress, torsional stiffness, and hysteresis loss will also be explored. Finally, using the harmonic drive experimental platform co-established with the partner company, we will measure the performance of torsional stiffness and hysteresis loss. The performance of the harmonic drive products developed by the partner company will be compared with those from Japan′s HDS (Harmonic Drive System). The experimental measurement results will be compared with the FEA analysis results to verify the rationality of the FEA model.
Finally, a harmonic drive tooth profile will be designed and optimized, with axial modification along the length of the flexspline tooth. This tooth profile can effectively enhance the torsional stiffness and contact ratio of the harmonic drive, reduce hysteresis loss, decrease contact stress on the tooth surface, and improve the transmission performance of the harmonic drive. | en_US |