博碩士論文 111323074 完整後設資料紀錄

DC 欄位 語言
DC.contributor機械工程學系zh_TW
DC.creator黃彥勛zh_TW
DC.creatorYen-Hsun Huangen_US
dc.date.accessioned2025-1-18T07:39:07Z
dc.date.available2025-1-18T07:39:07Z
dc.date.issued2025
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=111323074
dc.contributor.department機械工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract本研究是以6吋4H-SiC晶圓碇為研究材料,使用線放電加工機進行實驗,使用田口法探討脈衝放電時間(TON)、脈衝休止時間(TOFF)、開路電壓(OV)、伺服電壓(SV)對碳化矽的加工速度、表面粗糙度Ra、切槽損失量進行參數優化,並利用粒子追蹤模組模擬6吋碳化矽晶圓切片時加工渣堆積的現象,以模擬結果去分析實際切片的成果。 透過田口法加工厚度20 mm的碳化矽晶圓碇,發現脈衝放電時間對加工速度、表面粗糙度Ra、切槽損失量影響較大,持續時間越久,加工的速度越快,但表面粗糙度Ra以及切槽損失量結果較差,優化後最快加工速度可達到1.623 mm/min。 在粒子追蹤模組中利用不同沖水壓力分析6吋碳化矽切片時加工渣的堆積情況,模擬結果顯示較弱之沖水壓力堆積在加工區的粒子0.1 秒後才排出,較強之沖水壓力則只需0.06秒就能排出加工區,且經過計算粒子數量後,不同水壓對於排渣數量比率之差距最多可達到1091%。 分析實際切片晶圓之厚度均勻度及表面粗糙度Ra,結果顯示加工渣較容易堆積在晶圓中心,增加沖水壓力可以改善區域的表面粗糙度,但過大的沖水壓力則會造成晶圓破損。zh_TW
dc.description.abstractThis study utilizes 6-inch 4H-SiC wafer ingot as the research material and conducts experiments using a wire electrical discharge machine (WEDM). The Taguchi method is applied to optimize the parameters, including pulse-on time (TON), pulse-off time (TOFF), open circuit voltage (OV), and servo voltage (SV), to enhance the machining speed, surface roughness (Ra), and kerf loss of silicon carbide. Additionally, a particle tracking model is employed to simulate the accumulation of machining debris during the slicing of a 6-inch SiC wafer, and the simulation results are analyzed to assess the actual slicing performance. Using the Taguchi method to machine 20 mm thick silicon carbide wafer ingot , it was found that pulse-on time has a significant impact on machining speed, surface roughness (Ra), and kerf loss. The longer the pulse-on time, the faster the machining speed; however, surface roughness (Ra) and kerf loss tend to worsen. After optimization, the maximum machining speed reached 1.623 mm/min. The particle tracking model is used to analyze the accumulation of machining debris under different flushing pressures during the slicing process of 6-inch SiC wafers. The simulation results show that, under lower flushing pressure, debris remains in the machining area for 0.1 seconds before being discharged, whereas under higher flushing pressure, debris is discharged within 0.06 seconds. The difference in the amount ratio of debris discharged between different water pressures can reach up to 1091%. The analysis of actual wafer thickness uniformity and surface roughness (Ra) indicates that debris tends to accumulate in the center of the wafer. Increasing the flushing pressure improves surface roughness in this region, but excessively high flushing pressure may lead to wafer damage.en_US
DC.subject線放電加工zh_TW
DC.subject6吋zh_TW
DC.subject碳化矽晶圓zh_TW
DC.subject粒子追蹤zh_TW
DC.subject田口法zh_TW
DC.subjectwire electrical discharge machiningen_US
DC.subject6-inchen_US
DC.subjectsilicon carbide waferen_US
DC.subjectparticle trackingen_US
DC.subjecttaguchi methoden_US
DC.title6吋碳化矽晶圓碇之線放電加工參數優化與粒子追蹤模擬分析zh_TW
dc.language.isozh-TWzh-TW
DC.titleOptimization of Wire Electrical Discharge Machining Parameters and Particle Tracking Simulation Analysis for 6-inch Silicon Carbide Wafer Ingoten_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明