dc.description.abstract | n plastic injection molding processes, developing molds can incur high manufacturing costs. To reduce these costs, mold flow analysis is typically conducted upfront to simulate user designs. This ensures designs meet product requirements before mold production begins, achieving cost savings goals. Mold flow analysis simulates the injection molding process and its outcomes using physical meshes. Therefore, CAD models at the design stage need to be converted into physical meshes for this analysis. Excessive mesh complexity can lead to prolonged computation times during mold flow analysis. Surface meshes are derived from contour seedings during their construction process. The size of the initial mesh layer is dictated by the spacing of these contour seedings, indirectly affecting the overall CAD model mesh size. This research introduces a multi-size contour seeding method to vary mesh construction dimensions. Specifically, larger meshes are used for simpler contours, while smaller meshes are applied to intricate, small-scale contours. This approach reduces the number of CAD model meshes, thereby shortening mold flow analysis computation times. Particularly suited for IC CAD mold flow analysis, this multi-size seeding method significantly outperforms traditional single-size seeding, reducing analysis times by 50.40% to 99.11% across multiple test cases. Hence, this seeding technique markedly enhances the computational efficiency of mold flow analysis. | en_US |