博碩士論文 111323134 完整後設資料紀錄

DC 欄位 語言
DC.contributor機械工程學系zh_TW
DC.creator鍾翔宇zh_TW
DC.creatorXiang-Yu Zhongen_US
dc.date.accessioned2025-1-22T07:39:07Z
dc.date.available2025-1-22T07:39:07Z
dc.date.issued2025
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=111323134
dc.contributor.department機械工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract近年因應產業及製程需求,半導體產業所使用之矽晶圓厚度趨於薄化,在加工時產生的殘留應力容易使矽晶圓在後端加工製程時破損。而使用常見之接觸式或破壞式應力量測方式容易使得晶圓破裂,且量測效率較低,因此本研究採用光彈法(Photoelastic Method)來量測矽晶圓內部應力,其非接觸式且可全場量測的特性十分適合用於量測此類高單價且硬脆之材料。本技術透過紅外光光彈法量測非透明材料矽晶圓內部應力,搭配實驗量測及有限元素法模擬對應,以及分析在多種不同波長光源下,等向性光彈材料與矽晶圓試片之光彈條紋數量及分佈之變化與應力關係。本文使用光彈法架構作為基礎,利用偏振後的偏極光,通過具有雙折射性質(Birefringence)的材料試片,藉由分析試片折射率與入射光波長的關係來測定試片面內應力,並使用四步移相法(Four-Step Phase-Shifting Method)與六步移相法(Six-Step Phase-Shifting Method),透過拍攝不同相位圖像的方式,計算出矽晶圓試片之主應力方向角及內部應力差值。藉由實驗量測之等色線條紋(Isochromatic fringes)與有限元素分析軟體模擬試片受力結果比對,確認此技術之量測系統與解條方法之準確及可行性。本文的主要貢獻為:(1)建構一紅外光彈系統,整合自組型雙軸向位移平台,以拍攝大範圍全域之矽晶圓光彈圖像(2)分析矽晶圓異向性之光彈結構與矽晶圓晶格方向之關係,並透過四步及六步移相法計算試片之主應力方向角及內部應力差值,可直接對應得到試片內部各位置之量值,無須再細數條紋數以計算量值。(3)運用實驗量測結果與有限元素模擬比對,提供可全場量測非透明矽晶圓試片應力量測方法。本研究運用實驗量測與有限元素模擬比對,提供可全場量測非透明矽晶圓試片應力量測方法,預期可供半導體產業領域殘留應力檢測方面相關的運用價值。zh_TW
dc.description.abstractIn recent years, to meet the demands of the semiconductor industry and manufacturing processes, the thickness of silicon wafers used in the semiconductor industry has been trending towards thinning. The residual stress generated during processing can easily cause the silicon wafer to break during subsequent processing. Conventional contact or destructive stress measurement methods are prone to wafer breakage and have lower measurement efficiency. Therefore, this study adopts the photoelastic method to measure the internal stress of silicon wafers. Its non-contact and full-field measurement characteristics are particularly suitable for measuring such high-value and brittle materials. This technique measures the internal stress of non-transparent silicon wafers using infrared photoelasticity, combined with experimental measurements and finite element method simulations, and analyzes the changes in the number and distribution of isochromatic fringes of isotropic photoelastic materials and silicon wafer specimens under different wavelength light sources and their relationship with stress. Based on the photoelasticity framework, this paper uses polarized polarized light, which passes through a material specimen with birefringence, to determine the in-plane stress of the specimen by analyzing the relationship between the refractive index of the specimen and the incident light wavelength. Images of the specimen under different light fields are captured, and the four-step phase-shifting method and six-step phase-shifting method are used to calculate the principal stress direction angle and internal stress difference of the silicon wafer specimen by capturing images with different phases. By comparing the experimental isochromatic fringe patterns with the results of finite element analysis simulation of the specimen under load, the accuracy and feasibility of the measurement system and fringe analysis method are confirmed. The primary contributions of this research: (1) Develop an infrared photoelasticity system integrated with a custom-built biaxial displacement platform to capture full-field photoelastic images of large-area silicon wafers. (2) Investigate the correlation between the photoelastic structure of anisotropic silicon wafers and their crystallographic orientations. Employ four-step and six-step phase-shifting techniques to calculate the principal stress direction angles and internal stress differences within the specimens. This direct approach eliminates the need for manual fringe counting to obtain quantitative stress values at each point within the specimen. (3) Compare experimental measurement results with finite element simulation to provide a comprehensive method for full-field stress measurement of opaque silicon wafer specimens. This study uses experimental measurement and finite element simulation comparison to provide a full-field measurement method for the stress measurement of non-transparent silicon wafer specimens, which is expected to have application value in the residual stress inspection of the semiconductor industry.en_US
DC.subject紅外光zh_TW
DC.subject矽晶圓zh_TW
DC.subject光彈法zh_TW
DC.subject移相法zh_TW
DC.subject應力量測zh_TW
DC.subjectInfrared lighten_US
DC.subjectsilicon waferen_US
DC.subjectphotoelasticityen_US
DC.subjectphase-shifting methoden_US
DC.subjectstress measurementen_US
DC.title紅外線光彈技術於矽晶圓應力檢測之開發應用zh_TW
dc.language.isozh-TWzh-TW
DC.titleResearch on the Development and Application of Infrared Photoelastic Technique for Stress Measurement in Silicon Wafers.en_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明