dc.description.abstract | The scroll compressor, renowned for its exceptional operational efficiency, low vibration and noise levels, high reliability, and extended lifespan, is widely utilized across various applications. The core components of this compressor are a pair of intermeshing orbiting and fixed scroll rotors, where precise geometric design of the rotors is crucial for overall compressor performance. This study introduces an innovative scroll rotor design method that varies the rotor tooth height and thickness, applying variable base circle involute technology to achieve precise tooth profile design and multi-arc tooth head correction, optimizing rotor performance. To validate the impact of this design method on performance enhancement, a series of geometric parameter comparative analyses were conducted. Results indicate that the variable tooth thickness design significantly improves the compressor′s swept volume, base diameter, and compression ratio, while changes in tooth height further enhance the compression ratio. Performance comparisons between these newly designed rotors and conventional scroll rotors reveal that, under identical conditions, the new rotors exhibit substantial advantages in efficiency and volume, achieving overall miniaturization of the compressor. Furthermore, this paper establishes a set of dynamic balance calculation methods for scroll compressors and a model process for designing counterweights. By integrating SOLIDWORKS and ADAMS software to create a dynamic simulation model, detailed dynamic analysis in both time and frequency domains was conducted. This simulation not only allows for dynamic performance and balance correction of the compressor before the design and manufacturing stages but also improves the design and refinement of new scroll compressors. The analysis of the improved compressor′s dynamic characteristics, including the time and frequency domain characteristics of overall inertial forces and moments, confirms that the developed dynamic balance design method effectively enhances the dynamic load characteristics of the scroll compressor.
This finding not only demonstrates the innovation in micro-scroll compressor design but also highlights the potential for cost savings in R&D through precise simulation and dynamic balance correction. Through these innovative methods, the feasibility and performance of the design can be confirmed early in the compressor design stage, thereby reducing risks and costs in subsequent mass production. | en_US |